基于均量线和波动率的趋势追踪策略


创建日期: 2023-09-21 21:32:40 最后修改: 2023-09-21 21:32:40
复制: 0 点击次数: 658
avatar of ChaoZhang ChaoZhang
1
关注
1617
关注者

概述

本策略综合运用均量线、布林带和时间段量等多种指标,识别价格趋势的启动和结束,进行趋势追踪操作。策略通过多种指标确认,可有效过滤假突破。

策略原理

该策略包含以下关键步骤:

  1. 计算快速均量线和慢速均量线。均量线计算使用VWAP而不是收盘价,可更准确反映真实交易价格。

  2. 计算均量线的平均值,并以该平均值为基础绘制布林带。布林带可判断价格波动率是否扩大,提示趋势启动。

  3. 引入时间段量(TSV)指标,判断交易量是否在扩大,从而确认趋势存在。

  4. 当快速均量线上穿慢速均量线,价格高于布林上轨且TSV大于0时,产生买入信号;反之出现卖出信号。

  5. 使用均量线回撤以及布林下轨作为止损平仓信号。

策略优势

  • 使用多种指标确认,可有效过滤假突破,识别趋势开始

  • 均量线计算方法可更准确反映真实交易价格

  • 结合波动率指标判断趋势存在与否

  • 增加交易量指标,确认趋势发展中

  • 设置合理的止损和止盈标准,可控制风险

  • 参数可配置,可以灵活调整至最佳状态

策略风险

  • 多指标组合判断,存在参数优化难度大的问题

  • 均量线和布林带都存在滞后问题,可能带来止损不够及时

  • 时间段量指标对参数设置敏感,不同市场需要调整

  • 在盘整市场中,存在产生较多假信号的可能性

  • 未考虑交易成本的影响,实际盈亏会弱于回测结果

策略优化方向

  • 尝试采用机器学习方法自动优化参数组合

  • 设置动态移动止损或追踪止损,更好地锁定利润

  • 引入交易量能量指标,避免量能背离导致的失误交易

  • 结合波浪理论,判断目前处于趋势的早中后期,动态调整策略参数

  • 考虑实际交易成本影响,设置最小止盈幅度以控制成本效率

总结

本策略综合考量多种指标提供良好的趋势识别能力,可以有效判断真实趋势的启动和结束。通过参数优化、止损优化以及过滤器优化,可以进一步提升策略的稳定性。但整体来说,作为趋势追踪策略,其回撤和盈亏比例仍然需要承担一定风险。需要交易者耐心等待机会,且具备严格的风险管理意识。

策略源码
/*backtest
start: 2022-09-14 00:00:00
end: 2023-09-20 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// @version=4

// Credits

// "Vwap with period" code which used in this strategy to calculate the leadLine was written by "neolao" active on https://tr.tradingview.com/u/neolao/
// "TSV" code which used in this strategy was written by "liw0" active on https://www.tradingview.com/u/liw0. The code is corrected by "vitelot" December 2018.

strategy("HYE Trend Hunter [Strategy]", overlay = true, initial_capital = 1000, default_qty_value = 100, default_qty_type = strategy.percent_of_equity, commission_value = 0.025, pyramiding = 0)
  
// Strategy inputs 

slowtenkansenPeriod = input(9, minval=1, title="Slow Tenkan Sen VWAP Line Length", group = "Tenkansen / Kijunsen")
slowkijunsenPeriod = input(26, minval=1, title="Slow Kijun Sen VWAP Line Length", group = "Tenkansen / Kijunsen")
fasttenkansenPeriod = input(5, minval=1, title="Fast Tenkan Sen VWAP Line Length", group = "Tenkansen / Kijunsen")
fastkijunsenPeriod = input(13, minval=1, title="Fast Kijun Sen VWAP Line Length", group = "Tenkansen / Kijunsen")
BBlength = input(20, minval=1, title= "Bollinger Band Length", group = "Bollinger Bands")
BBmult = input(2.0, minval=0.001, maxval=50, title="Bollinger Band StdDev", group = "Bollinger Bands")
tsvlength  = input(13, minval=1, title="TSV Length", group = "Tıme Segmented Volume")
tsvemaperiod = input(7, minval=1, title="TSV Ema Length", group = "Tıme Segmented Volume")

// Make input options that configure backtest date range  
 
startDate = input(title="Start Date", type=input.integer,
     defval=1, minval=1, maxval=31, group = "Backtest Range")
startMonth = input(title="Start Month", type=input.integer,
     defval=1, minval=1, maxval=12, group = "Backtest Range")
startYear = input(title="Start Year", type=input.integer,
     defval=2000, minval=1800, maxval=2100, group = "Backtest Range")

endDate = input(title="End Date", type=input.integer, 
     defval=31, minval=1, maxval=31, group = "Backtest Range")
endMonth = input(title="End Month", type=input.integer,
     defval=12, minval=1, maxval=12, group = "Backtest Range") 
endYear = input(title="End Year", type=input.integer,
     defval=2021, minval=1800, maxval=2100, group = "Backtest Range")
     
inDateRange =  true

//Slow Tenkan Sen Calculation

typicalPriceTS = (high + low + close) / 3
typicalPriceVolumeTS = typicalPriceTS * volume
cumulativeTypicalPriceVolumeTS = sum(typicalPriceVolumeTS, slowtenkansenPeriod)
cumulativeVolumeTS = sum(volume, slowtenkansenPeriod)
slowtenkansenvwapValue = cumulativeTypicalPriceVolumeTS / cumulativeVolumeTS

//Slow Kijun Sen Calculation

typicalPriceKS = (high + low + close) / 3
typicalPriceVolumeKS = typicalPriceKS * volume
cumulativeTypicalPriceVolumeKS = sum(typicalPriceVolumeKS, slowkijunsenPeriod)
cumulativeVolumeKS = sum(volume, slowkijunsenPeriod)
slowkijunsenvwapValue = cumulativeTypicalPriceVolumeKS / cumulativeVolumeKS

//Fast Tenkan Sen Calculation

typicalPriceTF = (high + low + close) / 3
typicalPriceVolumeTF = typicalPriceTF * volume
cumulativeTypicalPriceVolumeTF = sum(typicalPriceVolumeTF, fasttenkansenPeriod)
cumulativeVolumeTF = sum(volume, fasttenkansenPeriod)
fasttenkansenvwapValue = cumulativeTypicalPriceVolumeTF / cumulativeVolumeTF

//Fast Kijun Sen Calculation

typicalPriceKF = (high + low + close) / 3
typicalPriceVolumeKF = typicalPriceKS * volume
cumulativeTypicalPriceVolumeKF = sum(typicalPriceVolumeKF, fastkijunsenPeriod)
cumulativeVolumeKF = sum(volume, fastkijunsenPeriod)
fastkijunsenvwapValue = cumulativeTypicalPriceVolumeKF / cumulativeVolumeKF

//Slow LeadLine Calculation
 
lowesttenkansen_s = lowest(slowtenkansenvwapValue, slowtenkansenPeriod)
highesttenkansen_s = highest(slowtenkansenvwapValue, slowtenkansenPeriod)

lowestkijunsen_s = lowest(slowkijunsenvwapValue, slowkijunsenPeriod)
highestkijunsen_s = highest(slowkijunsenvwapValue, slowkijunsenPeriod)

slowtenkansen = avg(lowesttenkansen_s, highesttenkansen_s)
slowkijunsen = avg(lowestkijunsen_s, highestkijunsen_s)
slowleadLine = avg(slowtenkansen, slowkijunsen)

//Fast LeadLine Calculation
 
lowesttenkansen_f = lowest(fasttenkansenvwapValue, fasttenkansenPeriod)
highesttenkansen_f = highest(fasttenkansenvwapValue, fasttenkansenPeriod)

lowestkijunsen_f = lowest(fastkijunsenvwapValue, fastkijunsenPeriod)
highestkijunsen_f = highest(fastkijunsenvwapValue, fastkijunsenPeriod)

fasttenkansen = avg(lowesttenkansen_f, highesttenkansen_f)
fastkijunsen = avg(lowestkijunsen_f, highestkijunsen_f)
fastleadLine = avg(fasttenkansen, fastkijunsen)

// BBleadLine Calculation

BBleadLine = avg(fastleadLine, slowleadLine)

// Bollinger Band Calculation
 
basis = sma(BBleadLine, BBlength)
dev = BBmult * stdev(BBleadLine, BBlength)
upper = basis + dev
lower = basis - dev

// TSV Calculation

tsv = sum(close>close[1]?volume*(close-close[1]):close<close[1]?volume*(close-close[1]):0,tsvlength)
tsvema = ema(tsv, tsvemaperiod)

// Rules for Entry & Exit  

if(fastleadLine > fastleadLine[1] and slowleadLine > slowleadLine[1] and tsv > 0 and tsv > tsvema and close > upper and inDateRange)
    strategy.entry("BUY", strategy.long)
 
if(fastleadLine < fastleadLine[1] and slowleadLine < slowleadLine[1])
    strategy.close("BUY")

// Plots 

colorsettingS = input(title="Solid Color Slow Leadline", defval=false, type=input.bool)
plot(slowleadLine, title = "Slow LeadLine", color = colorsettingS ? color.aqua : slowleadLine > slowleadLine[1] ? color.green : color.red, linewidth=3)

colorsettingF = input(title="Solid Color Fast Leadline", defval=false, type=input.bool)
plot(fastleadLine, title = "Fast LeadLine", color = colorsettingF ? color.orange : fastleadLine > fastleadLine[1] ? color.green : color.red, linewidth=3)

p1 = plot(upper, "Upper BB", color=#2962FF)
p2 = plot(lower, "Lower BB", color=#2962FF)
fill(p1, p2, title = "Background", color=color.blue)