This is a dual timeframe Supertrend tracking strategy. It applies Supertrend indicators in two different time periods, one as the main timeframe to determine the trend direction, and one as the auxiliary timeframe to filter entries. It only enters when the Supertrends in both timeframes are in the same direction, to more accurately capture trend reversal points.
The core indicator of this strategy is Supertrend. Supertrend determines the relative trend direction of prices by calculating price volatility. The strategy uses Supertrend in two time periods, calculating the Supertrend lines for the main and auxiliary timeframes respectively.
The specific trading logic is:
Use the direction of the main timeframe Supertrend as the overall trend direction.
Enter when the auxiliary timeframe Supertrend issues a signal in the same direction.
Set stop loss and take profit points.
Exit when the main timeframe Supertrend turns again.
By combining two timeframe indicators, some divergences can be filtered for more precise entry.
The advantages of this strategy include:
Dual timeframe combination allows more accurate trend judgment.
Supertrend is sensitive to trend changes, with accurate entry.
Stop loss and take profit controls risk.
Simple and direct strategy logic, easy to understand.
Parameters can be customized for different products.
The main risks are:
Supertrend lagging may cause misjudged signals.
Improper stop loss and take profit may cause over-chasing trends or premature stop loss.
Dual timeframe may miss some shorter reversals.
Parameter optimization relies on historical data, risks of overfitting exist.
No consideration of transaction costs.
The solutions are:
Adjust indicators parameters, add other indicators for combo verification.
Dynamically optimize stop loss and take profit based on backtest results.
Test shorter timeframes as auxiliary judgement.
Expand backtest data range, multi-market backtest verification.
Add transaction costs like commission and slippage.
The strategy can be further optimized by:
Testing more indicator combinations to find optimal combo.
Using machine learning to dynamically optimize parameters.
Optimizing stop loss and take profit for better risk-reward ratios.
Trying combo of more timeframes.
Adjusting take profit and stop loss ranges based on number of trades.
Adding commission and slippage logic.
Developing graphical parameter optimization tools.
This strategy achieves relatively accurate trend judgment and entries by using dual timeframe Supertrend indicators. It controls risks by setting stop loss and take profit. The strategy logic is simple and clear, easy to expand and optimize. It can be further improved by introducing more indicators, dynamically optimizing parameters, adding transaction costs etc to make it more robust. Overall, this strategy provides a useful dual timeframe trend tracking idea that holds good reference value.
/*backtest start: 2023-08-22 00:00:00 end: 2023-09-21 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 //Supertrend Strategy by breizh29 using *rajandran.r* Supertrend Indicator // strategy("Super Trend 2", overlay=true, default_qty_value=100) TrendUp = 0.0 TrendDown = 0.0 Trend = 0.0 MTrendUp = 0.0 MTrendDown = 0.0 MTrend = 0.0 res = input(title="Main SuperTrend Time Frame", defval="120") Factor=input(1, minval=1,maxval = 100) Pd=input(1, minval=1,maxval = 100) tp = input(500,title="Take Profit") sl = input(400,title="Stop Loss") Up=hl2-(Factor*atr(Pd)) Dn=hl2+(Factor*atr(Pd)) MUp=security(syminfo.tickerid,res,hl2-(Factor*atr(Pd))) MDn=security(syminfo.tickerid,res,hl2+(Factor*atr(Pd))) Mclose=security(syminfo.tickerid,res,close) TrendUp:=close[1]>TrendUp[1]? max(Up,TrendUp[1]) : Up TrendDown:=close[1]<TrendDown[1]? min(Dn,TrendDown[1]) : Dn MTrendUp:=Mclose[1]>MTrendUp[1]? max(MUp,MTrendUp[1]) : MUp MTrendDown:=Mclose[1]<MTrendDown[1]? min(MDn,MTrendDown[1]) : MDn Trend := close > TrendDown[1] ? 1: close< TrendUp[1]? -1: nz(Trend[1],1) Tsl = Trend==1? TrendUp: TrendDown MTrend := Mclose > MTrendDown[1] ? 1: Mclose< MTrendUp[1]? -1: nz(MTrend[1],1) MTsl = MTrend==1? MTrendUp: MTrendDown linecolor = Trend == 1 ? green : red plot(Tsl, color = linecolor , style = line , linewidth = 2,title = "SuperTrend") Mlinecolor = MTrend == 1 ? blue : orange plot(MTsl, color = Mlinecolor , style = line , linewidth = 2,title = "Main SuperTrend") plotshape(cross(close,Tsl) and close>Tsl , "Up Arrow", shape.triangleup,location.belowbar,green,0,0) plotshape(cross(Tsl,close) and close<Tsl , "Down Arrow", shape.triangledown , location.abovebar, red,0,0) up = Trend == 1 and Trend[1] == -1 and MTrend == 1 down = Trend == -1 and Trend[1] == 1 and MTrend == -1 plotarrow(up ? Trend : na, title="Up Entry Arrow", colorup=lime, maxheight=60, minheight=50, transp=0) plotarrow(down ? Trend : na, title="Down Entry Arrow", colordown=red, maxheight=60, minheight=50, transp=0) golong = Trend == 1 and Trend[1] == -1 and MTrend == 1 goshort = Trend == -1 and Trend[1] == 1 and MTrend == -1 strategy.entry("Buy", strategy.long,when=golong) strategy.exit("Close Buy","Buy",profit=tp,loss=sl) strategy.entry("Sell", strategy.short,when=goshort) strategy.exit("Close Sell","Sell",profit=tp,loss=sl)template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6