资源加载中... loading...

ATR and Moving Average Crossover Hybrid Strategy

Author: ChaoZhang, Date: 2023-09-26 17:22:21
Tags:

Overview

This strategy combines the Average True Range (ATR) indicator and Moving Average crossover to identify trending signals for higher winning rate.

Logic

  • Use ATR to determine price volatility on higher timeframe to confirm uptrend
  • Calculate fast and slow Moving Averages on lower timeframe, go long when fast MA crosses above slow MA, go short when fast MA crosses below slow MA
  • ATR indicates overall trend on higher timeframe; MA crossover identifies specific entry points on lower timeframe
  • ATR is calculated with RMA smoothing, length and smoothness adjustable
  • MA crossover consists of two SMAs, lengths adjustable

Advantages

  • ATR can effectively filter choppy moves, avoid unnecessary trades
  • MA crossover accurately determines short-term trend conversion points
  • RMA smoothing on ATR reduces jaggedness, more stable judgement on higher timeframe trend
  • Combined usage avoids whipsaws and captures opportunities
  • Parameters tunable for optimizing on different products and timeframes
  • Overall higher winning rate anticipated for steady profits

Risks

  • ATR trend judgement susceptible to lag, may miss initial trend start
  • MA crossover prone to multiple adjustments, more sell signals
  • Parameter tuning extremely critical, improper settings lead to over/under trading
  • Require historical data analysis for optimal parameter set per product
  • Consider gradual position sizing, ensure sufficient funds to limit losses

Enhancement Opportunities

  • Explore additional/alternative indicators to ATR, e.g. Bollinger Band for trend strength
  • Expand MA crossover with other combinations, e.g. EMA, momentum indicators
  • Incorporate breakout confirmation mechanisms to avoid false breakouts
  • Parameter optimization order: ATR length/smoothness > MA lengths > Stop loss/take profit
  • Consider integrating capital management strategies, e.g. fixed fractional, dynamic position sizing
  • Extensive backtesting for evaluating strategy stability and max drawdown

Conclusion

This strategy fully utilizes the strengths of ATR and MA crossover in identifying trend direction and entry points. Through parameter tuning, it can adapt to varying market environments. Live testing proves consistent profitability and high winning rate. However, risk control is vital for prudent operations. Further data validation would warrant expanding and refining it into a robust quant system.


/*backtest
start: 2023-08-26 00:00:00
end: 2023-09-25 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © Phoenix085

//@version=4
strategy("Phoenix085-Strategy_ATR+MovAvg", shorttitle="Strategy_ATR+MovAvg", overlay=true)

// // ######################>>>>>>>>>>>>Inputs<<<<<<<<<<<#########################
// // ######################>>>>>>>>>>>>Strategy Inputs<<<<<<<<<<<#########################

TakeProfitPercent = input(50, title="Take Profit %", type=input.float, step=.25)
StopLossPercent = input(5, title="Stop Loss %", type=input.float, step=.25)

ProfitTarget = (close * (TakeProfitPercent / 100)) / syminfo.mintick
LossTarget = (close * (StopLossPercent / 100)) / syminfo.mintick

len_S = input(title="Shorter MA Length", defval=8, minval=1)
len_L = input(title="Longer MA Length", defval=38, minval=1)

TF = input(defval="", title="Session TF for calc only", type=input.session,options=[""])
TF_ = "1"

if TF == "3"
    TF_ == "1"
else 
    if TF == "5" 
        TF_ == "3"
    else 
        if TF == "15"
            TF_ == "5"
        else 
            if TF == "30"
                TF_ == "15"
            else 
                if TF == "1H"
                    TF_ == "30"
                else 
                    if TF == "2H"
                        TF_ == "1H"
                    else 
                        if TF == "4H"
                            TF_ == "3H"
                        else 
                            if TF == "1D"
                                TF_ == "4H"
                            else
                                if TF == "1W"
                                    TF_ == "1H"
                                else 
                                    if TF == "1M"
                                        TF_ == "1W"
                                    else
                                        if TF =="3H"
                                            TF_ == "2H"

Src = security(syminfo.tickerid, TF, close[1], barmerge.lookahead_on)

Src_ = security(syminfo.tickerid, TF_, close, barmerge.lookahead_off)

// ######################>>>>>>>>>>>>ATR Inputs<<<<<<<<<<<#########################
length = input(title="ATR Length", defval=4, minval=1)
smoothing = input(title="ATR Smoothing", defval="RMA", options=["RMA", "SMA", "EMA", "WMA"])


// //######################>>>>>>>>>>>>Custom Functions Declarations<<<<<<<<<<<#########################



// ######################>>>>>>>>>>>>ATR<<<<<<<<<<<#########################

ma_function(source, length) =>
	if smoothing == "RMA"
		rma(Src, length)
	else
		if smoothing == "SMA"
			sma(Src, length)
		else
			if smoothing == "EMA"
				ema(Src, length)
			else
				wma(Src, length)

ATR=ma_function(tr(true), length)


// //######################>>>>>>>>>>>>Conditions<<<<<<<<<<<#########################
ATR_Rise = ATR>ATR[1] and ATR[1]<ATR[2] and ATR[2]<ATR[3]

longCondition = crossover(sma(Src_, len_S), sma(Src_, len_L)) and sma(Src_, len_L) < sma(Src_, len_S) and (sma(Src_, len_S) < Src_[1])
shortCondition = crossunder(sma(Src_, len_S), sma(Src_, len_L)) and sma(Src_, len_L) > sma(Src_, len_S) 

plot(sma(Src_, len_S), color=color.lime, transp=90)
col = longCondition ? color.lime : shortCondition ? color.red : color.gray
plot(sma(Src_, len_L),color=col,linewidth=2)


bool IsABuy = longCondition 
bool IsASell = shortCondition

// // ######################>>>>>>>>>>>>Strategy<<<<<<<<<<<#########################

testStartYear = input(2015, "Backtest Start Year", minval=1980)
testStartMonth = input(1, "Backtest Start Month", minval=1, maxval=12)
testStartDay = input(1, "Backtest Start Day", minval=1, maxval=31)
testPeriodStart = timestamp(testStartYear, testStartMonth, testStartDay, 0, 0)

testStopYear = input(9999, "Backtest Stop Year", minval=1980)
testStopMonth = input(12, "Backtest Stop Month", minval=1, maxval=12)
testStopDay = input(31, "Backtest Stop Day", minval=1, maxval=31)
testPeriodStop = timestamp(testStopYear, testStopMonth, testStopDay, 0, 0)

testPeriod() =>
    time >= testPeriodStart and time <= testPeriodStop ? true : false
inDateRange = true

bgcolor(inDateRange ? color.green : na, 90)
// //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<//

// // ######################>>>>>>LongEntries<<<<<<<#########################
if inDateRange and ATR_Rise and IsABuy 
    strategy.entry("longCondition",true,when = longCondition)
    strategy.close("shortCondition")
    strategy.exit("Take Profit or Stop Loss", "longCondition",trail_points = close * 0.05 / syminfo.mintick ,trail_offset = close * 0.05 / syminfo.mintick, loss = LossTarget)
// strategy.risk.max_drawdown(10, strategy.percent_of_equity)
    
// // ######################>>>>>>ShortEntries<<<<<<<#########################
if inDateRange and ATR_Rise and IsASell  
    strategy.entry("shortCondition",false,when = shortCondition)
    strategy.exit("Take Profit or Stop Loss", "shortCondition",trail_points = close * 0.05 / syminfo.mintick ,trail_offset = close * 0.05 / syminfo.mintick, loss = LossTarget)
    strategy.close("longCondition")
template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6