
这是一个非常简单的策略。它只由一个跟踪止损组成。当止损被触发时,仓位被反转,并对新的仓位设置一个跟踪止损。
该策略基于三种止损类型之一构建:百分比止损、ATR止损、绝对止损。当止损被触发时,仓位被反转,并对新的仓位设置一个跟踪止损。
具体来说,策略首先根据选择的止损类型计算出止损值。然后它会判断是否有建仓信号,即高点大于之前的止损价时做多,低点小于之前的止损价时做空。进场后,它会实时更新止损价,使其跟踪价格变化。多头止损价为低点减去止损值,空头止损价为高点加上止损值。
该策略最大的优势在于非常简单,只需要跟踪一个止损,不需要考虑入场点选和出场点选。止损值的灵活设置也使其适用范围更广。
相比固定止损,它采用的跟踪止损可以锁定更大的获利,同时也降低了止损被冲击的概率。每次止损触发后反转仓位,可以捕捉价格反转机会。
该策略可能存在的主要风险是止损价设置不当导致的风险。止损值设置过大,可能导致亏损扩大;止损值设置过小,可能导致止损频繁被触发。这需要根据市场情况针对性优化。
另一个风险是止损触发后反转仓位的方向判断不准确,从而错过价格反转机会或增加亏损。这需要结合趋势和支撑阻力判断确定最佳反转时机。
该策略可以从以下几个方面进行优化:
该策略通过简单的跟踪止损机制实现盈利,是一种适合初学者掌握的量化策略。与传统止损策略相比,它增加了止损触发后反转建仓的机制,从而获取额外收益。通过不断测试和优化,该策略可以成为一个非常实用的量化程序。
/*backtest
start: 2022-11-24 00:00:00
end: 2023-11-30 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
strategy(title="Trailing SL Strategy [QuantNomad]", shorttitle = "TrailingSL [QN]", overlay = true, default_qty_type = strategy.percent_of_equity, default_qty_value = 50)
////////////
// Inputs //
sl_type = input("%", options = ["%", "ATR", "Absolute"])
sl_perc = input(4, title = "% SL", type = input.float)
atr_length = input(10, title = "ATR Length")
atr_mult = input(2, title = "ATR Mult", type = input.float)
sl_absol = input(10, title = "Absolute SL", type = input.float)
// BACKTESTING RANGE
// From Date Inputs
fromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
fromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12)
fromYear = input(defval = 2016, title = "From Year", minval = 1970)
// To Date Inputs
toDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
toMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
toYear = input(defval = 2100, title = "To Year", minval = 1970)
// Calculate start/end date and time condition
startDate = timestamp(fromYear, fromMonth, fromDay, 00, 00)
finishDate = timestamp(toYear, toMonth, toDay, 00, 00)
time_cond = time >= startDate and time <= finishDate
//////////////////
// CALCULATIONS //
// SL values
sl_val = sl_type == "ATR" ? atr_mult * atr(atr_length) :
sl_type == "Absolute" ? sl_absol :
close * sl_perc / 100
// Init Variables
pos = 0
trailing_sl = 0.0
// Signals
long_signal = nz(pos[1]) != 1 and high > nz(trailing_sl[1])
short_signal = nz(pos[1]) != -1 and low < nz(trailing_sl[1])
// Calculate SL
trailing_sl := short_signal ? high + sl_val :
long_signal ? low - sl_val :
nz(pos[1]) == 1 ? max(low - sl_val, nz(trailing_sl[1])) :
nz(pos[1]) == -1 ? min(high + sl_val, nz(trailing_sl[1])) :
nz(trailing_sl[1])
// Position var
pos := long_signal ? 1 : short_signal ? -1 : nz(pos[1])
//////////////
// PLOTINGS //
plot(trailing_sl, linewidth = 2, color = pos == 1 ? color.green : color.red)
//////////////
// STRATEGY //
if (time_cond and pos != 1)
strategy.entry("long", true, stop = trailing_sl)
if (time_cond and pos != -1)
strategy.entry("short", false, stop = trailing_sl)