The core idea of this strategy is to combine inside bar patterns and moving average indicators to implement automated trading. When an inside bar pattern appears, it indicates that the current trend may be reversing. At this point, we use the position of the moving average line to determine the final trading direction.
Identify inside bar patterns. An inside bar refers to a candlestick where both the high and the low are within the real body of the previous bar. Based on the color of the real body, we can judge if it is a bullish or bearish inside bar.
Check the position of the moving average line. When an inside bar is found, if the price is above the moving average line, it is a bullish signal. If the price is below the moving average line, it is a bearish signal.
Combine the inside bar pattern and the moving average signal to determine the final trading direction. That is going short when the bearish inside bar breaks below the moving average line, and going long when the bullish inside bar breaks above the line.
Combining technical indicators and price patterns improves the accuracy of trading decisions.
Inside bars themselves contain strong price reversal signals that can identify trend reversal points early.
The moving average filters out some noise and avoids getting caught in range-bound oscillations.
Fully automated trading greatly reduces the time and effort costs of manual trading.
When prices oscillate around the moving average line, more false signals may appear, leading to over-trading. This can be reduced by optimizing the moving average parameters or adding filtering conditions.
This strategy works better in markets with clear trends. The performance may suffer in oscillating markets. Trend-judging indicators like ADX can be added to control the algorithm activation.
There is some time lag. Shortening parameters or optimizing moving average calculation methods may reduce the lag.
The risk of large drawdowns is considerable. Stop loss can control downside risk. Position sizing optimization also helps decrease drawdowns.
Optimize inside bar determination period parameters to find the best combination.
Try different types of moving averages, like EMA and SMA, to decide the most suitable one.
Add auxiliary indicators like MACD and KDJ to enrich trading signals and improve accuracy.
Incorporate filtering indicators like ADX and ATR to control algorithm activation in unsuitable market environments.
Optimize position management, such as risk-based sizing, pullback sizing etc. to better control risk and pursue higher returns.
This strategy implements a fully-automated quantitative trading solution by dynamically tracking inside bar signals and moving average indicators. The signal generation is simple and clear for easy understanding and tracking. It performs well in markets with obvious trends. Further optimization of parameters and rules can enhance the stability and profitability.
/*backtest start: 2023-11-20 00:00:00 end: 2023-12-20 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © myn //@version=5 strategy('Strategy Myth-Busting #10 - InsideBar+EMA - [MYN]', max_bars_back=5000, overlay=true, pyramiding=0, initial_capital=20000, currency='USD', default_qty_type=strategy.percent_of_equity, default_qty_value=100.0, commission_value=0.075, use_bar_magnifier = false) ///////////////////////////////////// //* Put your strategy logic below *// ///////////////////////////////////// //short if: inside bar and bearish & below 50 ema & price falls below low of inside bar. Opposite for long. on 4H TF // Inside Bar //░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ f_priorBarsSatisfied(_objectToEval, _numOfBarsToLookBack) => returnVal = false for i = 0 to _numOfBarsToLookBack if (_objectToEval[i] == true) returnVal = true i_numLookbackBars = input(2,title="Lookback for Inside Bar") // This source code is subject to the terms of the GNU License 2.0 at https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html // © cma //@version=5 //indicator('Inside Bar Ind/Alert', overlay=true) bullishBar = 1 bearishBar = -1 isInside() => previousBar = 1 bodyStatus = close >= open ? 1 : -1 isInsidePattern = high < high[previousBar] and low > low[previousBar] isInsidePattern ? bodyStatus : 0 barcolor(isInside() == bullishBar ? color.green : na) barcolor(isInside() == bearishBar ? color.red : na) // When is bullish bar paint green plotshape(isInside() == bullishBar, style=shape.triangleup, location=location.abovebar, color=color.new(color.green, 0)) // When is bearish bar paint red plotshape(isInside() == bearishBar, style=shape.triangledown, location=location.belowbar, color=color.new(color.red, 0)) isInsideBarMade = isInside() == bullishBar or isInside() == bearishBar alertcondition(isInsideBarMade, title='Inside Bar', message='Inside Bar came up!') i_srcInsideBarLong = input.source(close, title = "_____ falls above HIGH of inside bar (Long condition)") i_srcInsideBarShort = input.source(close, title = "_____ falls below LOW of inside bar (Short condition)") //if: inside bar and falls below low of inside bar. I think. insideBarLongEntry = f_priorBarsSatisfied(isInside() == bullishBar,i_numLookbackBars) and i_srcInsideBarLong > high[i_numLookbackBars] //isInside() == bullishBar insideBarShortEntry = f_priorBarsSatisfied(isInside() == bearishBar,i_numLookbackBars) and i_srcInsideBarShort < low[i_numLookbackBars] //isInside() == bearishBar // EMA //░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ i_src = input.source(close, title = "EMA Source") i_emaLength = input(50,title="EMA Length") ema = ta.ema(i_src, i_emaLength) emaPlot = plot(series=ema,color=color.blue, linewidth=2) emaLongEntry = i_src > ema emaShortEntry = i_src < ema ////////////////////////////////////// //* Put your strategy rules below *// ///////////////////////////////////// longCondition = insideBarLongEntry and emaLongEntry shortCondition = insideBarShortEntry and emaShortEntry //define as 0 if do not want to use closeLongCondition = 0 closeShortCondition = 0 // ADX //░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ adxEnabled = input.bool(defval = false , title = "Average Directional Index (ADX)", tooltip = "", group ="ADX" ) adxlen = input(14, title="ADX Smoothing", group="ADX") adxdilen = input(14, title="DI Length", group="ADX") adxabove = input(25, title="ADX Threshold", group="ADX") adxdirmov(len) => adxup = ta.change(high) adxdown = -ta.change(low) adxplusDM = na(adxup) ? na : (adxup > adxdown and adxup > 0 ? adxup : 0) adxminusDM = na(adxdown) ? na : (adxdown > adxup and adxdown > 0 ? adxdown : 0) adxtruerange = ta.rma(ta.tr, len) adxplus = fixnan(100 * ta.rma(adxplusDM, len) / adxtruerange) adxminus = fixnan(100 * ta.rma(adxminusDM, len) / adxtruerange) [adxplus, adxminus] adx(adxdilen, adxlen) => [adxplus, adxminus] = adxdirmov(adxdilen) adxsum = adxplus + adxminus adx = 100 * ta.rma(math.abs(adxplus - adxminus) / (adxsum == 0 ? 1 : adxsum), adxlen) adxsig = adxEnabled ? adx(adxdilen, adxlen) : na isADXEnabledAndAboveThreshold = adxEnabled ? (adxsig > adxabove) : true //Backtesting Time Period (Input.time not working as expected as of 03/30/2021. Giving odd start/end dates //░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ useStartPeriodTime = input.bool(true, 'Start', group='Date Range', inline='Start Period') startPeriodTime = input(timestamp('1 Jan 2019'), '', group='Date Range', inline='Start Period') useEndPeriodTime = input.bool(true, 'End', group='Date Range', inline='End Period') endPeriodTime = input(timestamp('31 Dec 2030'), '', group='Date Range', inline='End Period') start = useStartPeriodTime ? startPeriodTime >= time : false end = useEndPeriodTime ? endPeriodTime <= time : false calcPeriod = true // Trade Direction // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ tradeDirection = input.string('Long and Short', title='Trade Direction', options=['Long and Short', 'Long Only', 'Short Only'], group='Trade Direction') // Percent as Points // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ per(pcnt) => strategy.position_size != 0 ? math.round(pcnt / 100 * strategy.position_avg_price / syminfo.mintick) : float(na) // Take profit 1 // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ tp1 = input.float(title='Take Profit 1 - Target %', defval=10.5, minval=0.0, step=0.5, group='Take Profit', inline='Take Profit 1') q1 = input.int(title='% Of Position', defval=25, minval=0, group='Take Profit', inline='Take Profit 1') // Take profit 2 // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ tp2 = input.float(title='Take Profit 2 - Target %', defval=11, minval=0.0, step=0.5, group='Take Profit', inline='Take Profit 2') q2 = input.int(title='% Of Position', defval=25, minval=0, group='Take Profit', inline='Take Profit 2') // Take profit 3 // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ tp3 = input.float(title='Take Profit 3 - Target %', defval=11.5, minval=0.0, step=0.5, group='Take Profit', inline='Take Profit 3') q3 = input.int(title='% Of Position', defval=25, minval=0, group='Take Profit', inline='Take Profit 3') // Take profit 4 // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ tp4 = input.float(title='Take Profit 4 - Target %', defval=12, minval=0.0, step=0.5, group='Take Profit') /// Stop Loss // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ stoplossPercent = input.float(title='Stop Loss (%)', defval=4, minval=0.01, group='Stop Loss') * 0.01 slLongClose = close < strategy.position_avg_price * (1 - stoplossPercent) slShortClose = close > strategy.position_avg_price * (1 + stoplossPercent) /// Leverage // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ leverage = input.float(1, 'Leverage', step=.5, group='Leverage') contracts = math.min(math.max(.000001, strategy.equity / close * leverage), 1000000000) /// Trade State Management // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ isInLongPosition = strategy.position_size > 0 isInShortPosition = strategy.position_size < 0 /// ProfitView Alert Syntax String Generation // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ alertSyntaxPrefix = input.string(defval='CRYPTANEX_99FTX_Strategy-Name-Here', title='Alert Syntax Prefix', group='ProfitView Alert Syntax') alertSyntaxBase = alertSyntaxPrefix + '\n#' + str.tostring(open) + ',' + str.tostring(high) + ',' + str.tostring(low) + ',' + str.tostring(close) + ',' + str.tostring(volume) + ',' /// Trade Execution // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ longConditionCalc = (longCondition and isADXEnabledAndAboveThreshold) shortConditionCalc = (shortCondition and isADXEnabledAndAboveThreshold) if calcPeriod if longConditionCalc and tradeDirection != 'Short Only' and isInLongPosition == false strategy.entry('Long', strategy.long, qty=contracts) alert(message=alertSyntaxBase + 'side:long', freq=alert.freq_once_per_bar_close) if shortConditionCalc and tradeDirection != 'Long Only' and isInShortPosition == false strategy.entry('Short', strategy.short, qty=contracts) alert(message=alertSyntaxBase + 'side:short', freq=alert.freq_once_per_bar_close) //Inspired from Multiple %% profit exits example by adolgo https://www.tradingview.com/script/kHhCik9f-Multiple-profit-exits-example/ strategy.exit('TP1', qty_percent=q1, profit=per(tp1)) strategy.exit('TP2', qty_percent=q2, profit=per(tp2)) strategy.exit('TP3', qty_percent=q3, profit=per(tp3)) strategy.exit('TP4', profit=per(tp4)) strategy.close('Long', qty_percent=100, comment='SL Long', when=slLongClose) strategy.close('Short', qty_percent=100, comment='SL Short', when=slShortClose) strategy.close_all(when=closeLongCondition or closeShortCondition, comment='Close Postion') /// Dashboard // ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ // Inspired by https://www.tradingview.com/script/uWqKX6A2/ - Thanks VertMT showDashboard = input.bool(group="Dashboard", title="Show Dashboard", defval=false) f_fillCell(_table, _column, _row, _title, _value, _bgcolor, _txtcolor) => _cellText = _title + "\n" + _value table.cell(_table, _column, _row, _cellText, bgcolor=_bgcolor, text_color=_txtcolor, text_size=size.auto) // Draw dashboard table if showDashboard var bgcolor = color.new(color.black,0) // Keep track of Wins/Losses streaks newWin = (strategy.wintrades > strategy.wintrades[1]) and (strategy.losstrades == strategy.losstrades[1]) and (strategy.eventrades == strategy.eventrades[1]) newLoss = (strategy.wintrades == strategy.wintrades[1]) and (strategy.losstrades > strategy.losstrades[1]) and (strategy.eventrades == strategy.eventrades[1]) varip int winRow = 0 varip int lossRow = 0 varip int maxWinRow = 0 varip int maxLossRow = 0 if newWin lossRow := 0 winRow := winRow + 1 if winRow > maxWinRow maxWinRow := winRow if newLoss winRow := 0 lossRow := lossRow + 1 if lossRow > maxLossRow maxLossRow := lossRow // Prepare stats table var table dashTable = table.new(position.bottom_right, 1, 15, border_width=1) if barstate.islastconfirmedhistory // Update table dollarReturn = strategy.netprofit f_fillCell(dashTable, 0, 0, "Start:", str.format("{0,date,long}", strategy.closedtrades.entry_time(0)) , bgcolor, color.white) // + str.format(" {0,time,HH:mm}", strategy.closedtrades.entry_time(0)) f_fillCell(dashTable, 0, 1, "End:", str.format("{0,date,long}", strategy.opentrades.entry_time(0)) , bgcolor, color.white) // + str.format(" {0,time,HH:mm}", strategy.opentrades.entry_time(0)) _profit = (strategy.netprofit / strategy.initial_capital) * 100 f_fillCell(dashTable, 0, 2, "Net Profit:", str.tostring(_profit, '##.##') + "%", _profit > 0 ? color.green : color.red, color.white) _numOfDaysInStrategy = (strategy.opentrades.entry_time(0) - strategy.closedtrades.entry_time(0)) / (1000 * 3600 * 24) f_fillCell(dashTable, 0, 3, "Percent Per Day", str.tostring(_profit / _numOfDaysInStrategy, '#########################.#####')+"%", _profit > 0 ? color.green : color.red, color.white) _winRate = ( strategy.wintrades / strategy.closedtrades ) * 100 f_fillCell(dashTable, 0, 4, "Percent Profitable:", str.tostring(_winRate, '##.##') + "%", _winRate < 50 ? color.red : _winRate < 75 ? #999900 : color.green, color.white) f_fillCell(dashTable, 0, 5, "Profit Factor:", str.tostring(strategy.grossprofit / strategy.grossloss, '##.###'), strategy.grossprofit > strategy.grossloss ? color.green : color.red, color.white) f_fillCell(dashTable, 0, 6, "Total Trades:", str.tostring(strategy.closedtrades), bgcolor, color.white) f_fillCell(dashTable, 0, 8, "Max Wins In A Row:", str.tostring(maxWinRow, '######') , bgcolor, color.white) f_fillCell(dashTable, 0, 9, "Max Losses In A Row:", str.tostring(maxLossRow, '######') , bgcolor, color.white)template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6