Momentum Breakout Optimization

Author: ChaoZhang, Date: 2024-01-17 16:44:30



The Momentum Breakout Optimization strategy is a trend following strategy that generates trading signals and sets stop loss/take profit based on momentum indicators. It judges the market trend direction by calculating the crossovers between price and moving average, and builds a dynamic stop loss mechanism using ATR and LinReg Channel. Meanwhile, the strategy also identifies overbought/oversold levels using the CMO indicator for better entry prices.

Strategy Logic

    1. Calculate the ZLEMA moving average of price as the technical indicator for trend direction
    1. Calculate long stop loss and short stop loss based on ATR
    1. Calculate the CMO indicator to identify overbought/oversold zones, combined with moving average as entry signals
    1. Generate 3 sets of trading signals based on ATR, moving average and price breakouts
    • Crossovers between moving average and stop loss levels
    • Crossovers between price and stop loss levels
    • Crossovers between price and moving average
    1. Enable/Disable different signal combinations through parameter settings
    1. Set risk percentage and position sizing for risk management

The overall strategy combines multiple indicators for steady trend following and automated stop loss, ensuring adequate trading opportunities while controlling trading risks.

Advantage Analysis

Combination of Multiple Indicators

The strategy utilizes a combination of indicators including moving average, ATR, CMO etc. The indicators complement each other and provide more reliable judgements on trend direction and overbought/oversold zones.

Dynamic Trailing Stop

The ATR-based dynamic stop loss can flexibly adjust stop loss levels based on market volatility, effectively controlling single trade loss.

Comprehensive Risk Management

The strategy provides position sizing and risk percentage settings, which defines the maximum percentage of capital at risk to prevent severe fund fluctuations.

Abundant Trading Signals

The strategy offers 3 sets of trading signals. By enabling different signal combinations, better backtest results can be obtained.

Risk Analysis

High Trading Frequency

There could be overly frequent trading when all signal combinations are enabled. This can be avoided by only using some of the signals.

Sensitive to Parameter Settings

The multiparameter model makes parameter optimization more complex and sensitive. The optimal parameter combination requires extensive testing.

Higher Drawdown for Breakout Signals

For the pure price/stop loss breakout signals, the stop loss range is wider, which may lead to larger single trade loss and drawdown. Combining with moving average signals is recommended.

Optimization Directions

Test Different Parameter Combinations

Optimize parameters like moving average type/length, ATR period, CMO period to find the optimal match.

Optimize Signal Usage Strategies

Test the performance of using only moving average signals, stop loss signals, or combination signals to find the best usage strategy.

Test Performance Across Different Products

Backtest the strategy across index, forex, commodity products to analyze adaptivity across different market types.


This strategy integrates multiple indicators for trend identification, stop loss construction, overbought/oversold detection. By tuning parameters and signal combinations, satisfactory risk metrics can be achieved. The overall system is comprehensive and reliable for further live testing and optimization.

start: 2024-01-09 00:00:00
end: 2024-01-16 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]

// This source code is subject to the terms of the Mozilla Public License 2.0 at
// © KivancOzbilgic
//developer: @KivancOzbilgic
//author: @KivancOzbilgic

strategy(title="Profit Maximizer PMax", overlay=true,
     pyramiding=0, initial_capital=1000,
     commission_value=0.025, slippage=2)

src = input(hl2, title="Source")
Periods = input(title="ATR Length", type=input.integer, defval=10)
Multiplier = input(title="ATR Multiplier", type=input.float, step=0.1, defval=3.0)
mav = input(title="Moving Average Type", defval="ZLEMA", options=["SMA", "EMA", "WMA", "TMA", "VAR", "WWMA", "ZLEMA", "TSF"])
length =input(10, "Moving Average Length", minval=1)
changeATR= input(title="Change ATR Calculation Method ?", type=input.bool, defval=true)
showsupport = input(title="Show Moving Average?", type=input.bool, defval=true)
showsignalsk = input(title="Show Crossing Signals?", type=input.bool, defval=true)
showsignalsc = input(title="Show Price/Pmax Crossing Signals?", type=input.bool, defval=false)
highlighting = input(title="Highlighter On/Off ?", type=input.bool, defval=true)

usePosSize = input(title="Use Position Sizing?", type=input.bool, defval=true)
riskPerc   = input(title="Risk %", type=input.float, defval=0.5, step=0.25)

// Make input options that configure backtest date range
startDate = input(title="Start Date", type=input.integer,
     defval=1, minval=1, maxval=31)
startMonth = input(title="Start Month", type=input.integer,
     defval=1, minval=1, maxval=12)
startYear = input(title="Start Year", type=input.integer,
     defval=2019, minval=1800, maxval=2100)

endDate = input(title="End Date", type=input.integer,
     defval=1, minval=1, maxval=31)
endMonth = input(title="End Month", type=input.integer,
     defval=12, minval=1, maxval=12)
endYear = input(title="End Year", type=input.integer,
     defval=2021, minval=1800, maxval=2100)
// Look if the close time of the current bar
// falls inside the date range
inDateRange = true

atr2 = sma(tr, Periods)
atr= changeATR ? atr(Periods) : atr2
vud1=src>src[1] ? src-src[1] : 0
vdd1=src<src[1] ? src[1]-src : 0
wwalpha = 1/ length
WWMA = 0.0
WWMA := wwalpha*src + (1-wwalpha)*nz(WWMA[1])
zxLag = length/2==round(length/2) ? length/2 : (length - 1) / 2
zxEMAData = (src + (src - src[zxLag]))
ZLEMA = ema(zxEMAData, length)
lrc = linreg(src, length, 0)
lrc1 = linreg(src,length,1)
lrs = (lrc-lrc1)
TSF = linreg(src, length, 0)+lrs
getMA(src, length) =>
    ma = 0.0
    if mav == "SMA"
        ma := sma(src, length)

    if mav == "EMA"
        ma := ema(src, length)

    if mav == "WMA"
        ma := wma(src, length)

    if mav == "TMA"
        ma := sma(sma(src, ceil(length / 2)), floor(length / 2) + 1)

    if mav == "VAR"
        ma := VAR

    if mav == "WWMA"
        ma := WWMA

    if mav == "ZLEMA"
        ma := ZLEMA

    if mav == "TSF"
        ma := TSF
MAvg=getMA(src, length)
longStop = MAvg - Multiplier*atr
longStopPrev = nz(longStop[1], longStop)
longStop := MAvg > longStopPrev ? max(longStop, longStopPrev) : longStop
shortStop = MAvg + Multiplier*atr
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := MAvg < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop
dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and MAvg > shortStopPrev ? 1 : dir == 1 and MAvg < longStopPrev ? -1 : dir
PMax = dir==1 ? longStop: shortStop
plot(showsupport ? MAvg : na, color=#0585E1, linewidth=2, title="Moving Avg Line")
pALL=plot(PMax,, linewidth=2, title="PMax", transp=0)

alertcondition(cross(MAvg, PMax), title="Cross Alert", message="PMax - Moving Avg Crossing!")
alertcondition(crossover(MAvg, PMax), title="Crossover Alarm", message="Moving Avg BUY SIGNAL!")
alertcondition(crossunder(MAvg, PMax), title="Crossunder Alarm", message="Moving Avg SELL SIGNAL!")
alertcondition(cross(src, PMax), title="Price Cross Alert", message="PMax - Price Crossing!")
alertcondition(crossover(src, PMax), title="Price Crossover Alarm", message="PRICE OVER PMax - BUY SIGNAL!")
alertcondition(crossunder(src, PMax), title="Price Crossunder Alarm", message="PRICE UNDER PMax - SELL SIGNAL!")

// Calculate position size
riskEquity  = (riskPerc / 100) * strategy.equity
atrCurrency = (atr(20) * syminfo.pointvalue)
posSize     = usePosSize ? floor(riskEquity / atrCurrency) : 1

buySignalk = crossover(MAvg, PMax)
plotshape(buySignalk and showsignalsk ? PMax*0.995 : na, title="Buy", text="BuyL", location=location.absolute, style=shape.labelup, size=size.tiny,, textcolor=color.white, transp=0)

if(buySignalk and showsignalsk and inDateRange)
    strategy.entry(id="buySignalk", long=true, qty=posSize)
sellSignallk = crossunder(MAvg, PMax)
plotshape(sellSignallk and showsignalsk ? PMax*1.005 : na, title="Sell", text="SellL", location=location.absolute, style=shape.labeldown, size=size.tiny,, textcolor=color.white, transp=0)

if(sellSignallk and showsignalsk and inDateRange)
    strategy.order(id="sellSignallk", long=false, qty=strategy.position_size)
buySignalc = crossover(src, PMax)
plotshape(buySignalc and showsignalsc ? PMax*0.995 : na, title="Buy", text="BuyS", location=location.absolute, style=shape.labelup, size=size.tiny, color=#0F18BF, textcolor=color.white, transp=0)

if(buySignalc and showsignalsc and inDateRange)
    strategy.entry(id="BuyS", long=false, qty=posSize)

sellSignallc = crossunder(src, PMax)
plotshape(sellSignallc and showsignalsc ? PMax*1.005 : na, title="Sell", text="SellS", location=location.absolute, style=shape.labeldown, size=size.tiny, color=#0F18BF, textcolor=color.white, transp=0)

if(sellSignallc and showsignalsc and inDateRange)
    strategy.order(id="SellS", long=true, qty=abs(strategy.position_size))

mPlot = plot(ohlc4, title="", style=plot.style_circles, linewidth=0,display=display.none)

longFillColor = highlighting ? (MAvg>PMax ? : na) : na
shortFillColor = highlighting ? (MAvg<PMax ? : na) : na

fill(mPlot, pALL, title="UpTrend Highligter", color=longFillColor)
fill(mPlot, pALL, title="DownTrend Highligter", color=shortFillColor)

// Exit open market position when date range ends
if (not inDateRange)