This unique systematic rulebased trading strategy is in the trend following category. It uses normalised prices series transformed from raw ticker price to gernerate trading signals. Advanced position sizing and risk management techniques, commonly reserved for institutional portfolio management, are utilised in this strategy - proven positioning and risk control technologies used by financial advisers like Commodity Trading Advisors and Managed Futures funds.
The “normalised price” is a volatility-adjusted accumulated daily returns series. Daily volatility adjustment lookback is user defined. Hull moving average of the normalised price is used as the main trend indicator. Lookback period of the HMA is user defined too, with default period of 100 days for a responsive signal without inducing over-trading.
The core trades are simple, long when normalised price crossover HMA, short when crossunder HMA. New signals close any existing opposing position.
Position size is dynamically adjusted based on recent price volatility and the user defined annual risk target. Positions are risk-weighted, larger size with lower volatility and smaller with higher volatility. Recent volatility is the standard deviation of returns over the last 14 periods, then extrapolated into annual volatility as expeted returns. Annual risk target is used as reference for volatility adjusted position sizing. Default target is 10% of total capital. Initial capital should be set as maximum loss per trade. Max leverage allows achieving risk target if underlying natural volatility is insuffient, and alleviates excessively low volatility.
Hard stops are based on recent price average true range multiplier, user configurable.
Risk controls measures include alternate moving average selections, adjusting risk targets.
The strategy integrates various techniques like normalisation, dynamic position adjustment, hard stops to control risks. Trading is based on simple trend following rules. Parameters can be adjusted for personal preferences and market regimes. Worth further testing and verification for viable real world application.
/*backtest start: 2023-01-17 00:00:00 end: 2024-01-23 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © Crunchster1 //@version=5 strategy(title="Crunchster's Normalised Trend Strategy", shorttitle="Normalised Trend Strategy", overlay=false ) // Inputs and Parameters src = input(close, 'Source', group='Strategy Settings') length = input.int(title="Lookback period for price normalisation filter", defval=14, minval=2, group='Strategy Settings', tooltip='This sets the lookback period for the volatility adjustment of returns, which is used to transform the price series into the "real price"') hlength = input.int(title="Lookback period for Hull Moving Average", defval=100, minval=2, group='Strategy Settings') offset = input.int(title="HMA Offset", defval=0, minval=0, group='Strategy Settings') long = input(true, 'Long', inline='08', group='Strategy Settings') short = input(true, 'Short', inline='08', group='Strategy Settings', tooltip='Toggle long/short strategy on/off') stopMultiple = input.float(1, 'Stop multiple', step=0.25, group='Risk Management Settings', tooltip='Multiple for ATR, setting hard stop loss from entry price') lev = input.float(1, 'Max Leverage', step=0.5, group='Risk Management Settings', tooltip='Max leverage sets maximum allowable leverage of total capital (initial capital + any net profit), capping maximum volatility adjusted position size') riskT = input.float(10, maxval=75, title='Annualised Volatility Target %', group='Risk Management Settings', tooltip='Specify annual risk target, used to determine volatility adjusted position size. Annualised daily volatility is referenced to this value and position size adjusted accordingly') comp = input(false, 'Compounding', inline='09', group='Risk Management Settings') Comppct = input.float(50, '%', step=5, inline='09', group='Risk Management Settings', tooltip='Toggle compounding of profit, and set % of profit to compound') // Backtesting period FromDay = input.int(defval=1, title='From Day', minval=1, maxval=31, inline='04', group='Backtest range') FromMonth = input.int(defval=1, title='From Mon', minval=1, maxval=12, inline='04', group='Backtest range') FromYear = input.int(defval=2018, title='From Yr', minval=1900, inline='04', group='Backtest range', tooltip='Set start of backtesting period') ToDay = input.int(defval=1, title='To Day', minval=1, maxval=31, inline='05', group='Backtest range') ToMonth = input.int(defval=1, title='To Mon', minval=1, maxval=12, inline='05', group='Backtest range') ToYear = input.int(defval=9999, title='To Yr', minval=1900, inline='05', group='Backtest range', tooltip='Set end of backtesting period') start = timestamp(FromYear, FromMonth, FromDay, 00, 00) finish = timestamp(ToYear, ToMonth, ToDay, 23, 59) window = true // Normalised returns calculation nRet = (src - src[1]) / ta.stdev((src - src[1]), length) nPrice = ta.cum(nRet) //Hull Moving Average - using normalised price series fHMA = ta.wma(2 * ta.wma(nPrice[offset], hlength / 2) - ta.wma(nPrice[offset], hlength), math.round(math.sqrt(hlength))) //Risk Management formulae strategy.initial_capital = 50000 tr = math.max(high - low, math.abs(high - close), math.abs(low - close)) //True range stopL = ta.sma(tr, 14) //Average true range stdev = ta.stdev(close-close[1], 14) //volatility of recent returns maxcapital = strategy.initial_capital+strategy.netprofit //Maximum capital available to invest - initial capital net of profit annvol = 100*math.sqrt(365)*stdev/close //converts recent volatility of returns into annualised volatility of returns - assumes daily timeframe risk = 1.1 if comp risk := (strategy.initial_capital+(Comppct*strategy.netprofit/100))//adjust investment capital to include compounding else risk := strategy.initial_capital shares = (risk * (riskT/annvol)) / close //calculates volatility adjusted position size, dependent on user specified annualised risk target if ((shares*close) > lev*maxcapital) //ensures position size does not exceed available capital multiplied by user specified maximum leverage shares := lev*maxcapital/close //To set the price at the entry point of trade Posopen() => math.abs(strategy.position_size[1]) <= 0 and math.abs(strategy.position_size) > 0 var float openN = na if Posopen() openN := stopL // Strategy Rules if long longCondition = ta.crossover(nPrice, fHMA) and window exitlong = ta.crossunder(nPrice, fHMA) if (longCondition) strategy.entry('Go Long!', strategy.long, qty=shares) if strategy.position_size > 0 strategy.exit('Stop Long', from_entry = 'Go Long!', stop=(strategy.opentrades.entry_price(0) - (openN * stopMultiple))) if (exitlong) strategy.close('Go Long!', immediately = true) if short shortCondition = ta.crossunder(nPrice, fHMA) and window exitshort = ta.crossover(nPrice, fHMA) if (shortCondition) strategy.entry('Go Short!', strategy.short, qty=shares) if strategy.position_size < 0 strategy.exit('Stop Short', from_entry = 'Go Short!', stop=(strategy.opentrades.entry_price(0) + (openN * stopMultiple))) if (exitshort) strategy.close('Go Short!', immediately = true) // Visuals of trend and direction plot(nPrice, title='Real Price', color=color.black) MAColor = fHMA > fHMA[3] ? #00ff00 : #ff0000 MA1 = plot(fHMA, title='Hull MA', color=MAColor) MA2 = plot(fHMA[3], title='Hull MA Offset', color=MAColor) fill(MA1, MA2, title='Band Filler', color=MAColor)template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6