The golden cross SMA trading strategy generates buy and sell signals based on the crossover between two moving averages of different timeframes. Specifically, when the faster moving average crosses above the slower moving average from below, a golden cross is formed, indicating a bullish trend reversal. When the faster MA crosses below the slower MA from above, a death cross is formed, indicating a bearish trend reversal.
The strategy is based on two principles:
Moving averages can reflect market trend and momentum. The shorter-term MA captures recent price moves and reversals. The longer-term MA shows the prevailing trend.
When the faster MA forms a golden cross with the slower MA, it indicates the short-term momentum is gaining strength over the long-term trend, hence likely the start of an uptrend. The death cross indicates the long-term downtrend is dominating, thus likely a continued downtrend.
Specifically, this strategy uses 13 and 30-period simple moving averages and trades their crossover signals. The crossover logic is:
The golden cross between the MAs generates a long signal, indicating buying opportunity. The viability of the signal is evaluated by requiring an persisting uptrend over some minimum period to confirm bull trend.
The death cross between the MAs generates a short signal. Similarly, a persisting downtrend is required to confirm viability of the signal for shorting.
The slope difference between the MAs are used to gauge the strength of the crossover signals. Only when the difference exceeds a threshold would the signal be considered strong enough to trade on. This helps eliminate false signals.
Stop loss is set at 20% and take profit at 100%.
The SMA crossover strategy has the following advantages:
The logic is simple and easy to understand, suitable for beginners.
Utilizes price averaging to filter out noise and avoid being misguided by short-term fluctuations.
Evaluates trend persistence instead of just blindly following crossover signals, ensuring greater confirmation with overall market conditions.
Introduces slope momentum factor on the MAs to make signals more reliable.
Easy backtesting and optimization with just a few key parameters like MA periods and trend duration.
The strategy also has the following risks:
Crossover signals are lagging by nature and cannot perfectly predict reversals. Delay risk exists. Should use shorter MAs or combine with predictive indicators.
Mechanical systems tends to trigger simultaneous trades, exacerbating momentum and invalidating stop loss / take profit. Should use staged exits or manual override.
Does not perform well in choppy sideways markets. Should avoid such instruments and focus on trending pairs.
Performance depends greatly on properly calibrated parameters like trend duration. Requires iterative testing to find optimum values.
The strategy can be further optimized by:
Adding higher timeframe trend evaluation to avoid counter-trend trades. For example using weekly or monthly prices.
Requiring trading volume confirmation to eliminate false signals. Only trade signals with expanding volume.
Optimizing MA parameters to find best periods combination. Consider adaptive moving averages.
Incorporate popular indicators like MACD, KD to assist signal confirmation and accuracy.
Adopt staged stop loss / take profit to better control risk.
The SMA crossover strategy is highly intuitive and easy to interpret. It combines the noise filtering property of moving averages with the simple trend identification capability of crossover signals. The additional signal confirmation provides greater practicality and stability. On top of the improvements covered, there remains ample room for further optimization, making this a worthwhile strategy to research on.
/*backtest start: 2024-01-01 00:00:00 end: 2024-01-25 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © MakeMoneyCoESTB2020 //*********************Notes for continued work*************** //************************************************************ //Hello my fellow investors //I am creating a simple non-cluttered strategy that uses 3(+1) simple means to determine: viability, entry, and exit //1) Has a consistent trend been maintained for several days/weeks //2) SH SMA crossover LG SMA = Bullish entry/LG SMA crossover SH SMA = Bearish entry //3) Use the Slope factor & Weeks in Trend (WiT) to dertermine how strong of an entry signal you are comfortable with //4) Exit position based on next SMA cross and trend reversal or stop loss% //3+1) For added confidence in trend detection: Apply MACD check - buy--> MACD line above signal line and corssover below histogram \\ sell --> MACD line below signal line and crossover above histogram. //*)This code also allows you to determine your desired backtesting date compliments of alanaster //This code is the product of many hours of hard work on the part of the greater tradingview community. The credit goes to everyone in the community who has put code out there for the greater good. //Happy Hunting! // 1. Define strategy settings************************************************************************************************************************************************************************* //Title strategy("KISS Strategy: SMA + EMA", shorttitle="KISS Strat") //define calculations price source price = input(title="Price Source", defval=close) // 2. Calculate strategy values************************************************************************************************************************************************************************* //Calculate 13/30/200SMA SH_SMA_length= input(title="SH SMA Length", defval=13) //short SMA length LG_SMA_length= input(title="LG SMA Length", defval=30) //long SMA length GV_SMA_length= input(title="SH SMA Length", defval=200) //Gravitational SMA length SH_SMA=sma(price, SH_SMA_length) //short SMA LG_SMA=sma(price, LG_SMA_length) //long SMA GV_SMA=sma(price, GV_SMA_length) //gravitational SMA //calculate MACD //define variables for speed fast = 12, slow = 26 //define parameters to calculate MACD fastMA = ema(price, fast) slowMA = ema(price, slow) //define MACD line macd = fastMA - slowMA //define SIGNAL line signal = sma(macd, 9) //Determine what type of trend we are in dcp = security(syminfo.tickerid, 'D', close) //daily close price wcp = security(syminfo.tickerid, 'W', close) //weekly close price WiT = input(title="Weeks In Trend", defval=1, maxval=5, minval=1) //User input for how many weeks of price action to evaluate (Weeks in Trend = WiT) BearTrend = false //initialize trend variables as false BullTrend = false //initialize trend variables as false // BullTrend := (wcp > SH_SMA) and (SH_SMA > LG_SMA) //true if price is trending up based on weekly price close // BearTrend := (wcp < SH_SMA) and (SH_SMA < LG_SMA) //true if price is trending down based on weekly price close // BullTrend := (price > SH_SMA) and (SH_SMA > LG_SMA) //true if price is trending up // BearTrend := (price < SH_SMA) and (SH_SMA < LG_SMA) //true if price is trending down //Determine if the market has been in a trend for 'n' weeks n=WiT //create loop internal counting variable for i=1 to WiT //create loop to determine if BearTrend=true to set number of weeks if (wcp[n] < price) //evaluate if BearTrend=false comparing the current price to a paticular week close BearTrend := false //set value to false if older price value is less than newer: trending up break //break out of for loop when trend first falters if (wcp[n] > price) //evaluate if BearTrend=true comparing the current price to a paticular week close BearTrend := true //set value to true if older price value is greater than newer: trending down n:=n-1 //set internal counter one day closer to present m=WiT //create loop internal counting variable for j=1 to WiT //create loop to determine if BearTrend=true to set number of weeks if (wcp[m] > price) //evaluate if BullTrend=false comparing the current price to a paticular week close BullTrend := false //set value to false if older price value is greater than newer: trending down break //break out of for loop when trend first falters if (wcp[m] < price) //evaluate if BullTrend=true comparing the current price to a paticular week close BullTrend := true //set value to true if older price value is less than newer: trending up m:=m-1 //set internal counter one day closer to present //Determine if crossings occur SH_LGcrossover = crossover(SH_SMA, LG_SMA) //returns true if short crosses over long SH_LGcrossunder = crossunder(SH_SMA, LG_SMA) //returns true if short crosses under long //Determine the slope of the SMAs when a cross over occurs SlopeFactor= input(title="Slope Factor", defval=.01, minval=0, step = 0.001) //user input variable for what slope to evaluate against XSlopeSH = abs(SH_SMA-SH_SMA[2]) //slope of short moving average (time cancels out) XSlopeLG = abs(LG_SMA-LG_SMA[2]) //slope of long moving average (time cancels out) StrongSlope = iff (abs(XSlopeSH-XSlopeLG)>SlopeFactor, true, false) //create a boolean variable to determine is slope intensity requirement is met // ************************************ INPUT BACKTEST RANGE ******************************************=== coutesy of alanaster fromMonth = input(defval = 4, title = "From Month", type = input.integer, minval = 1, maxval = 12) fromDay = input(defval = 1, title = "From Day", type = input.integer, minval = 1, maxval = 31) fromYear = input(defval = 2020, title = "From Year", type = input.integer, minval = 1970) thruMonth = input(defval = 1, title = "Thru Month", type = input.integer, minval = 1, maxval = 12) thruDay = input(defval = 1, title = "Thru Day", type = input.integer, minval = 1, maxval = 31) thruYear = input(defval = 2112, title = "Thru Year", type = input.integer, minval = 1970) // === INPUT SHOW PLOT === showDate = input(defval = true, title = "Show Date Range", type = input.bool) // === FUNCTION EXAMPLE === start = timestamp(fromYear, fromMonth, fromDay, 00, 00) // backtest start window finish = timestamp(thruYear, thruMonth, thruDay, 23, 59) // backtest finish window window() => true bgcolor(color = showDate and window() ? color.gray : na, transp = 90) // === EXECUTION === //strategy.entry("L", strategy.long, when = window() and crossOv) // enter long when "within window of time" AND crossover //strategy.close("L", when = window() and crossUn) // exit long when "within window of time" AND crossunder // 3. Output strategy data************************************************************************************************************************************************************************* //Embolden line if a trend exists trendcolorLG = BearTrend?color.red:color.black //highlights beartrend condition met graphically trendcolorSH = BullTrend?color.green:color.black //highlights beartrend condition met graphically //plot SMAs plot(SH_SMA, title = "SH SMA", color = trendcolorSH) plot(LG_SMA, title = "LG SMA", color = trendcolorLG) plot(GV_SMA, title = "GV SMA", color = color.silver, linewidth = 4, transp = 70) //Highlight crossovers plotshape(series=SH_LGcrossover, style=shape.arrowup, location=location.belowbar,size=size.normal, color=color.green) plotshape(series=SH_LGcrossunder, style=shape.arrowdown, location=location.abovebar,size=size.normal, color=color.red) // 4. Determine Long & Short Entry Calculations************************************************************************************************************************************************************************* //Define countback variable countback=input(minval=0, maxval=5, title="Price CountBack", defval=0) //User input for what evaluations to run: SMA or SMA + EMA SMA_Y_N=input(defval = "Y", title="Run SMA", type=input.string, options=["Y", "N"]) MACD_Y_N=input(defval = "N", title="Run MACD", type=input.string, options=["Y", "N"]) //Calculate SMA Cross entry conditions SMAbuy=false SMAsell=false SMAbuy := SH_LGcrossover and StrongSlope and BearTrend[WiT*7] //enter long if short SMA crosses over long SMA & security has been in a BearTrend for 'n' days back SMAsell := SH_LGcrossunder and StrongSlope and BullTrend[WiT*7] //enter short if short SMA crosses under long SMA & security has been in a BullTrend for 'n' days back //Calculate MACD Cross entry conditions MACDbuy = iff(MACD_Y_N=="Y", crossunder(signal[countback], macd[countback]), true) and iff(MACD_Y_N=="Y", macd[countback]<0, true) and StrongSlope and BearTrend //enter long if fast MACD crosses over slow MACD & there is a strong slope & security has been in a BearTrend for 'n' days back MACDsell = iff(MACD_Y_N=="Y", crossunder(macd[countback], signal[countback]), true) and iff(MACD_Y_N=="Y", signal[countback]>0, true) and StrongSlope and BullTrend //enter short if fast MACD crosses under slow MACD & there is a strong slope & security has been in a BullTrend for 'n' days back //long entry condition dataHCLB=(iff(SMA_Y_N=="Y", SMAbuy, true) and iff(MACD_Y_N=="Y", MACDbuy, true)) plotshape(dataHCLB, title= "HC-LB", color=color.lime, style=shape.circle, text="HC-LB") strategy.entry("HC-Long", strategy.long, comment="HC-Long", when = dataHCLB and window()) //short entry condition dataHCSB=(iff(SMA_Y_N=="Y", SMAsell, true) and iff(MACD_Y_N=="Y", MACDsell, true)) plotshape(dataHCSB, title= "HC-SB", color=color.fuchsia, style=shape.circle, text="HC-SB") strategy.entry("HC-Short", strategy.short, comment="HC-Short", when=dataHCSB and window()) // 5. Submit Profit and Loss Exit Calculations Orders************************************************************************************************************************************************************************* // User Options to Change Inputs (%) stopPer = input(12, title='Stop Loss %', type=input.float) / 100 takePer = input(25, title='Take Profit %', type=input.float) / 100 // Determine where you've entered and in what direction longStop = strategy.position_avg_price * (1 - stopPer) shortStop = strategy.position_avg_price * (1 + stopPer) shortTake = strategy.position_avg_price * (1 - takePer) longTake = strategy.position_avg_price * (1 + takePer) //exit position conditions and orders if strategy.position_size > 0//or crossunder(price[countback], upperBB) strategy.exit(id="Close Long", when = window(), stop=longStop, limit=longTake) if strategy.position_size < 0 //or crossover(price[countback], lowerBB) strategy.exit(id="Close Short", when = window(), stop=shortStop, limit=shortTake) //Evaluate/debug equation*************************************************************************************************************************************************************************** // plotshape((n==5? true : na), title='n=5', style=shape.labeldown, location=location.abovebar, text='5', color=color.white, textcolor=color.black, transp=0) //print n value if 5 // plotshape((n==4? true : na), title='n=4', style=shape.labeldown, location=location.abovebar, text='4', color=color.white, textcolor=color.black, transp=0) //print n value if 4 // plotshape((n==3? true : na), title='n=3', style=shape.labeldown, location=location.abovebar, text='3', color=color.white, textcolor=color.black, transp=0) //print n value if 3 // plotshape((n==2? true : na), title='n=2', style=shape.labeldown, location=location.abovebar, text='2', color=color.white, textcolor=color.black, transp=0) //print n value if 2 // plotshape((n==1? true : na), title='n=1', style=shape.labeldown, location=location.abovebar, text='1', color=color.white, textcolor=color.black, transp=0) //print n value if 1 // lineValue = 11 //set random visible line value to check when equation is true // colorP = (BearTrend==true) ? color.green : color.red // plot (lineValue, title = "BearTrend", color = colorP) //Plot when condition true=green, false=red // plot (XSlopeLG+15, color=color.white) //used for code debugging // plot (XSlopeSH+15, color=color.blue) //used for code debugging // plot (abs(XSlopeSH-XSlopeLG)+20, color=color.fuchsia) //used for code debuggingtemplate: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6