This strategy utilizes the combination signals of multiple technical indicators to dynamically trade the underlying assets like stocks and cryptocurrencies. The strategy can automatically identify market trends and track them. Also, stop loss mechanism is incorporated to control risks.
This strategy mainly leverages moving averages, relative strength index (RSI), average true range (ATR) and directional movement index (ADX) to generate trading signals.
Specifically, it first adopts double moving average crossovers to form signals. The fast line has a length of 10 days and the slow line has a length of 50 days. Golden crossovers (fast line breaking above slow line from below) generate buy signals while dead crossovers generate sell signals. This system can effectively identify reversals in long-term trends.
On top of double MAs, RSI is introduced to confirm the trend signals and avoid false breakouts. RSI judges the market strength by the divergence between the fast and slow line. When RSI breaks above 30, buy signal is generated. When breaking below 70, sell signal is generated.
In addition, ATR is used to automatically adjust the stop loss level. ATR can effectively reflect the volatility of markets. When volatility rises, wider stop loss will be set to reduce the probability of being stopped out.
Finally, ADX gauges the strength of the trend. ADX uses the divergence between the positive indicator DI+ and negative indicator DI- to measure trend strength. Only when ADX breaks above 20, the trend is considered to be established and actual trading signals are generated.
By combining signals from multiple indicators, the strategy can be more prudent in sending trading signals, avoiding the interference from false signals and hence achieving higher win rate.
The advantages of this strategy include:
The combination of MA, RSI, ATR, ADX and more can improve the accuracy and avoid faulty judgements due to single indicator.
Adjusting stop loss based on market volatility can reduce the probability of being stopped out and effectively manage risks.
By judging trend strength with ADX before actual trading, losses from trading against trends can be reduced.
Parameters like MA lengths, RSI length, ATR period and ADX period can all be adjusted and optimized for different markets. Hence the strategy has strong adaptability.
Identifying long-term trends using the fast and slow MA system and reducing short-term noises with indicators like RSI, long-term holding in trends becomes possible for higher profits.
There are also a few risks associated with this strategy:
More parameters means greater difficulty in optimization. Unsuitable parameter sets may deteriorate strategy performance. More adequate backtesting and parameter tuning can alleviate this risk.
All technical indicators have applicable market states. When markets enter peculiar states, indicators used may fail simultaneously. Risks from such BLACK SWAN events need attention.
The strategy allows short trading. Short positions inherently have the risk of unlimited losses. This can be reduced by setting proper stop loss.
Indicators cannot promptly respond to reversals. Wrong directional positions often incur losses during reversals. Shortening parameters of some indicators may improve sensitivities.
There is room for further optimization:
Analyze correlations between indicators/market states and design mechanisms to dynamically adjust indicator weights based on changing market conditions to improve decisions.
Use deep learning models to forecast price movement directions and augment the rules-based system to improve accuracy.
Design adaptive tuning modules for indicator parameters based on sliding window historical data so that the strategy can better adapt.
Integrate variable-period analysis like Elliott Waves Theory to assist judging mid-long term trends and improve profitability.
In summary, this strategy integrates MA, RSI, ATR, ADX and more into a relatively comprehensive system, which can identify longer-term trends via the MA system and reduce noise interference with short-term indicators like RSI. Also, large optimization space exists for performance improvement. The strategy improves decisions by combining indicators and controls risks. It deserves further research and application.
/*backtest start: 2023-01-28 00:00:00 end: 2024-02-03 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code to my testing // © sgb //@version=5 strategy(title='Soren test 2', overlay=true, initial_capital=100, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.percent_of_equity, default_qty_value=50, commission_value=0.04) //SOURCE ============================================================================================================================================================================================================================================================================================================= src = input(open) // INPUTS ============================================================================================================================================================================================================================================================================================================ //ADX -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ADX_options = input.string('MASANAKAMURA', title='Adx Type', options=['CLASSIC', 'MASANAKAMURA'], group='ADX') ADX_len = input.int(38, title='Adx lenght', minval=1, group='ADX') th = input.float(23, title='Adx Treshold', minval=0, step=0.5, group='ADX') // Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ volume_f = input.float(1.2, title='Volume mult.', minval=0, step=0.1, group='Volume') sma_length = input.int(35, title='Volume lenght', minval=1, group='Volume') //RSI---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- len_3 = input.int(25, title='RSI lenght', group='Relative Strenght Indeks') src_3 = input.source(low, title='RSI Source', group='Relative Strenght Indeks') RSI_VWAP_length = input(25, title='Rsi vwap lenght') // Range Filter --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- per_ = input.int(26, title='SAMPLING PERIOD', minval=1, group='Range Filter') mult = input.float(2.3, title='RANGE MULTIPLIER', minval=0.1, step=0.1, group='Range Filter') // Cloud -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- len = input.int(1, title='Cloud Length', group='Cloud') //RMI ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- RMI_len = input.int(26, title='Rmi Lenght', minval=1, group='Relative Momentum Index') mom = input.int(17, title='Rmi Momentum', minval=1, group='Relative Momentum Index') RMI_os = input.int(33, title='Rmi oversold', minval=0, group='Relative Momentum Index') RMI_ob = input.int(68, title='Rmi overbought', minval=0, group='Relative Momentum Index') // Indicators Calculations ======================================================================================================================================================================================================================================================================================================== // Range Filter ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- var bool L_RF = na var bool S_RF = na Range_filter(_src, _per_, _mult) => var float _upward = 0.0 var float _downward = 0.0 wper = _per_ * 2 - 1 avrng = ta.ema(math.abs(_src - _src[1]), _per_) _smoothrng = ta.ema(avrng, wper) * _mult _filt = _src _filt := _src > nz(_filt[1]) ? _src - _smoothrng < nz(_filt[1]) ? nz(_filt[1]) : _src - _smoothrng : _src + _smoothrng > nz(_filt[1]) ? nz(_filt[1]) : _src + _smoothrng _upward := _filt > _filt[1] ? nz(_upward[1]) + 1 : _filt < _filt[1] ? 0 : nz(_upward[1]) _downward := _filt < _filt[1] ? nz(_downward[1]) + 1 : _filt > _filt[1] ? 0 : nz(_downward[1]) [_smoothrng, _filt, _upward, _downward] [smoothrng, filt, upward, downward] = Range_filter(src, per_, mult) hband = filt + smoothrng lband = filt - smoothrng L_RF := high > hband and upward > 0 S_RF := low < lband and downward > 0 //ADX------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- calcADX(_len) => up = ta.change(high) down = -ta.change(low) plusDM = na(up) ? na : up > down and up > 0 ? up : 0 minusDM = na(down) ? na : down > up and down > 0 ? down : 0 truerange = ta.rma(ta.tr, _len) _plus = fixnan(100 * ta.rma(plusDM, _len) / truerange) _minus = fixnan(100 * ta.rma(minusDM, _len) / truerange) sum = _plus + _minus _adx = 100 * ta.rma(math.abs(_plus - _minus) / (sum == 0 ? 1 : sum), _len) [_plus, _minus, _adx] calcADX_Masanakamura(_len) => SmoothedTrueRange = 0.0 SmoothedDirectionalMovementPlus = 0.0 SmoothedDirectionalMovementMinus = 0.0 TrueRange = math.max(math.max(high - low, math.abs(high - nz(close[1]))), math.abs(low - nz(close[1]))) DirectionalMovementPlus = high - nz(high[1]) > nz(low[1]) - low ? math.max(high - nz(high[1]), 0) : 0 DirectionalMovementMinus = nz(low[1]) - low > high - nz(high[1]) ? math.max(nz(low[1]) - low, 0) : 0 SmoothedTrueRange := nz(SmoothedTrueRange[1]) - nz(SmoothedTrueRange[1]) / _len + TrueRange SmoothedDirectionalMovementPlus := nz(SmoothedDirectionalMovementPlus[1]) - nz(SmoothedDirectionalMovementPlus[1]) / _len + DirectionalMovementPlus SmoothedDirectionalMovementMinus := nz(SmoothedDirectionalMovementMinus[1]) - nz(SmoothedDirectionalMovementMinus[1]) / _len + DirectionalMovementMinus DIP = SmoothedDirectionalMovementPlus / SmoothedTrueRange * 100 DIM = SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100 DX = math.abs(DIP - DIM) / (DIP + DIM) * 100 adx = ta.sma(DX, _len) [DIP, DIM, adx] [DIPlusC, DIMinusC, ADXC] = calcADX(ADX_len) [DIPlusM, DIMinusM, ADXM] = calcADX_Masanakamura(ADX_len) DIPlus = ADX_options == 'CLASSIC' ? DIPlusC : DIPlusM DIMinus = ADX_options == 'CLASSIC' ? DIMinusC : DIMinusM ADX = ADX_options == 'CLASSIC' ? ADXC : ADXM L_adx = DIPlus > DIMinus and ADX > th S_adx = DIPlus < DIMinus and ADX > th // Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Volume_condt = volume > ta.sma(volume, sma_length) * volume_f //RSI------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ up_3 = ta.rma(math.max(ta.change(src_3), 0), len_3) down_3 = ta.rma(-math.min(ta.change(src_3), 0), len_3) rsi_3 = down_3 == 0 ? 100 : up_3 == 0 ? 0 : 100 - 100 / (1 + up_3 / down_3) L_rsi = rsi_3 < 70 S_rsi = rsi_3 > 30 RSI_VWAP = ta.rsi(ta.vwap(close), RSI_VWAP_length) RSI_VWAP_overSold = 13 RSI_VWAP_overBought = 68 L_VAP = ta.crossover(RSI_VWAP, RSI_VWAP_overSold) S_VAP = ta.crossunder(RSI_VWAP, RSI_VWAP_overBought) //Cloud -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- PI = 2 * math.asin(1) hilbertTransform(src) => 0.0962 * src + 0.5769 * nz(src[2]) - 0.5769 * nz(src[4]) - 0.0962 * nz(src[6]) computeComponent(src, mesaPeriodMult) => hilbertTransform(src) * mesaPeriodMult computeAlpha(src, fastLimit, slowLimit) => mesaPeriod = 0.0 mesaPeriodMult = 0.075 * nz(mesaPeriod[1]) + 0.54 smooth = 0.0 smooth := (4 * src + 3 * nz(src[1]) + 2 * nz(src[2]) + nz(src[3])) / 10 detrender = 0.0 detrender := computeComponent(smooth, mesaPeriodMult) I1 = nz(detrender[3]) Q1 = computeComponent(detrender, mesaPeriodMult) jI = computeComponent(I1, mesaPeriodMult) jQ = computeComponent(Q1, mesaPeriodMult) I2 = 0.0 Q2 = 0.0 I2 := I1 - jQ Q2 := Q1 + jI I2 := 0.2 * I2 + 0.8 * nz(I2[1]) Q2 := 0.2 * Q2 + 0.8 * nz(Q2[1]) Re = I2 * nz(I2[1]) + Q2 * nz(Q2[1]) Im = I2 * nz(Q2[1]) - Q2 * nz(I2[1]) Re := 0.2 * Re + 0.8 * nz(Re[1]) Im := 0.2 * Im + 0.8 * nz(Im[1]) if Re != 0 and Im != 0 mesaPeriod := 2 * PI / math.atan(Im / Re) mesaPeriod if mesaPeriod > 1.5 * nz(mesaPeriod[1]) mesaPeriod := 1.5 * nz(mesaPeriod[1]) mesaPeriod if mesaPeriod < 0.67 * nz(mesaPeriod[1]) mesaPeriod := 0.67 * nz(mesaPeriod[1]) mesaPeriod if mesaPeriod < 6 mesaPeriod := 6 mesaPeriod if mesaPeriod > 50 mesaPeriod := 50 mesaPeriod mesaPeriod := 0.2 * mesaPeriod + 0.8 * nz(mesaPeriod[1]) phase = 0.0 if I1 != 0 phase := 180 / PI * math.atan(Q1 / I1) phase deltaPhase = nz(phase[1]) - phase if deltaPhase < 1 deltaPhase := 1 deltaPhase alpha = fastLimit / deltaPhase if alpha < slowLimit alpha := slowLimit alpha [alpha, alpha / 2.0] er = math.abs(ta.change(src, len)) / math.sum(math.abs(ta.change(src)), len) [a, b] = computeAlpha(src, er, er * 0.1) mama = 0.0 mama := a * src + (1 - a) * nz(mama[1]) fama = 0.0 fama := b * mama + (1 - b) * nz(fama[1]) alpha = math.pow(er * (b - a) + a, 2) kama = 0.0 kama := alpha * src + (1 - alpha) * nz(kama[1]) L_cloud = kama > kama[1] S_cloud = kama < kama[1] // RMI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- RMI(len, m) => up = ta.ema(math.max(close - close[m], 0), len) dn = ta.ema(math.max(close[m] - close, 0), len) RMI = dn == 0 ? 0 : 100 - 100 / (1 + up / dn) RMI L_rmi = ta.crossover(RMI(RMI_len, mom), RMI_os) S_rmi = ta.crossunder(RMI(RMI_len, mom), RMI_ob) //STRATEGY ========================================================================================================================================================================================================================================================================================================== L_1 = L_VAP and L_RF and not S_adx S_1 = S_VAP and S_RF and not L_adx L_2 = L_adx and Volume_condt and L_rsi and L_cloud S_2 = S_adx and Volume_condt and S_rsi and S_cloud L_3 = L_rmi and L_RF and not S_adx S_3 = S_rmi and S_RF and not L_adx L_basic_condt = L_1 or L_2 or L_3 S_basic_condt = S_1 or S_2 or S_3 var bool longCondition = na var bool shortCondition = na var float last_open_longCondition = na var float last_open_shortCondition = na var int last_longCondition = 0 var int last_shortCondition = 0 longCondition := L_basic_condt shortCondition := S_basic_condt last_open_longCondition := longCondition ? close : nz(last_open_longCondition[1]) last_open_shortCondition := shortCondition ? close : nz(last_open_shortCondition[1]) last_longCondition := longCondition ? time : nz(last_longCondition[1]) last_shortCondition := shortCondition ? time : nz(last_shortCondition[1]) in_longCondition = last_longCondition > last_shortCondition in_shortCondition = last_shortCondition > last_longCondition // SWAP-SL --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- var int last_long_sl = na var int last_short_sl = na sl = input.float(2, 'Swap % period', minval=0, step=0.1, group='strategy settings') long_sl = ta.crossunder(low, (1 - sl / 100) * last_open_longCondition) and in_longCondition and not longCondition short_sl = ta.crossover(high, (1 + sl / 100) * last_open_shortCondition) and in_shortCondition and not shortCondition last_long_sl := long_sl ? time : nz(last_long_sl[1]) last_short_sl := short_sl ? time : nz(last_short_sl[1]) var bool CondIni_long_sl = 0 CondIni_long_sl := long_sl ? 1 : longCondition ? -1 : nz(CondIni_long_sl[1]) var bool CondIni_short_sl = 0 CondIni_short_sl := short_sl ? 1 : shortCondition ? -1 : nz(CondIni_short_sl[1]) Final_Long_sl = long_sl and nz(CondIni_long_sl[1]) == -1 and in_longCondition and not longCondition Final_Short_sl = short_sl and nz(CondIni_short_sl[1]) == -1 and in_shortCondition and not shortCondition var int sectionLongs = 0 sectionLongs := nz(sectionLongs[1]) var int sectionShorts = 0 sectionShorts := nz(sectionShorts[1]) // RE-ENTRY --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- if longCondition or Final_Long_sl sectionLongs += 1 sectionShorts := 0 sectionShorts if shortCondition or Final_Short_sl sectionLongs := 0 sectionShorts += 1 sectionShorts var float sum_long = 0.0 var float sum_short = 0.0 if longCondition sum_long := nz(last_open_longCondition) + nz(sum_long[1]) sum_short := 0.0 sum_short if Final_Long_sl sum_long := (1 - sl / 100) * last_open_longCondition + nz(sum_long[1]) sum_short := 0.0 sum_short if shortCondition sum_short := nz(last_open_shortCondition) + nz(sum_short[1]) sum_long := 0.0 sum_long if Final_Short_sl sum_long := 0.0 sum_short := (1 + sl / 100) * last_open_shortCondition + nz(sum_short[1]) sum_short var float Position_Price = 0.0 Position_Price := nz(Position_Price[1]) Position_Price := longCondition or Final_Long_sl ? sum_long / sectionLongs : shortCondition or Final_Short_sl ? sum_short / sectionShorts : na //TP_1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- tp = input.float(1.2, 'Tp-1 ', minval=0, step=0.1, group='strategy settings') long_tp = ta.crossover(high, (1 + tp / 100) * fixnan(Position_Price)) and in_longCondition and not longCondition short_tp = ta.crossunder(low, (1 - tp / 100) * fixnan(Position_Price)) and in_shortCondition and not shortCondition var int last_long_tp = na var int last_short_tp = na last_long_tp := long_tp ? time : nz(last_long_tp[1]) last_short_tp := short_tp ? time : nz(last_short_tp[1]) Final_Long_tp = long_tp and last_longCondition > nz(last_long_tp[1]) Final_Short_tp = short_tp and last_shortCondition > nz(last_short_tp[1]) fixnan_1 = fixnan(Position_Price) ltp = Final_Long_tp ? fixnan_1 * (1 + tp / 100) : na fixnan_2 = fixnan(Position_Price) stp = Final_Short_tp ? fixnan_2 * (1 - tp / 100) : na if Final_Short_tp or Final_Long_tp sum_long := 0.0 sum_short := 0.0 sectionLongs := 0 sectionShorts := 0 sectionShorts if Final_Long_tp CondIni_long_sl == 1 if Final_Short_tp CondIni_short_sl == 1 // COLORS & PLOTS -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ADX_COLOR = L_adx ? color.lime : S_adx ? color.red : color.orange barcolor(color=ADX_COLOR) hbandplot = plot(hband, title='RF HT', color=ADX_COLOR, transp=50) lbandplot = plot(lband, title='RF LT', color=ADX_COLOR, transp=50) fill(hbandplot, lbandplot, title='RF TR', color=ADX_COLOR, transp=90) plotshape(longCondition, title='Long', style=shape.triangleup, location=location.belowbar, color=color.new(color.blue, 0), size=size.tiny) plotshape(shortCondition, title='Short', style=shape.triangledown, location=location.abovebar, color=color.new(color.red, 0), size=size.tiny) plot(ltp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false) plot(stp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false) //BACKTESTING-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Q = 50 SL = input.float(0.4, 'StopLoss ', minval=0, step=0.1) strategy.entry('long', strategy.long, when=longCondition) strategy.entry('short', strategy.short, when=shortCondition) strategy.exit('TP', 'long', qty_percent=Q, limit=fixnan(Position_Price) * (1 + tp / 100)) strategy.exit('TP', 'short', qty_percent=Q, limit=fixnan(Position_Price) * (1 - tp / 100)) strategy.exit('SL', 'long', stop=fixnan(Position_Price) * (1 - SL / 100)) strategy.exit('SL', 'short', stop=fixnan(Position_Price) * (1 + SL / 100)) // // // // // // // By SGBtemplate: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6