This strategy integrates Ichimoku Cloud, moving average, MACD, Stochastic and ATR indicators to identify and track trends across multiple timeframes. It adopts ATR-based stop loss and take profit methods for risk control after obtaining high probability trend signals.
Ichimoku Cloud judges medium and long term trend directions. The CLOSE price crossing above Ichimoku’s turning line and baseline is a bullish signal, and crossing below them is a bearish signal.
MACD judges short-term trends and overbought/oversold situations. MACD histogram crossing above MACD signal line is a bullish signal, and crossing below is a bearish signal.
Stochastic KD judges overbought/oversold zones. K line crossing above 20 is a bullish signal, and crossing below 80 is a bearish signal.
Moving average judges medium-term trends. Close price crossing above MA is a bullish signal, and crossing below is a bearish signal.
Integrate signals from the above indicators to filter out some false signals and form high probability sustainable trend signals.
Use ATR to calculate stop loss and take profit price. Use a certain multiple of ATR as stop loss and take profit bits to control risks.
Identify trends across multiple timeframes to improve signal accuracy.
Widely employ indicator combos to effectively filter out false signals.
ATR-based stop loss & take profit significantly limits per trade loss.
Customizable strictness of entry conditions caters to different risk appetites.
Trend following nature fails to detect reversals caused by black swan events.
Idealized ATR stop loss is hard to fully replicate in live trading.
Improper parameter settings may lead to overtrading or insufficient signal accuracy.
Parameter tweak is needed to fit different products and market environments.
Introduce machine learning to aid judging trend reversal points.
Optimize ATR multiplier parameter values for different products.
Incorporate other factors like volume changes to improve breakthrough signal accuracy.
Keep optimizing parameters based on backtest results to find best parameter combinations.
This strategy leverages Ichimoku Cloud, MACD, Stochastic and more for multi-timeframe trend identification, capturing trends while avoiding being trapped by black swan events. The ATR-based stop loss & take profit effectively limits per trade loss. With more auxiliary judgments and machine learning methods introduced, this strategy has further optimization potential.
/*backtest start: 2024-01-05 00:00:00 end: 2024-02-04 00:00:00 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © FXFUNDINGMATE //@version=4 strategy(title="FXFUNDINGMATE TREND INDICATOR", overlay=true) //Ichimoku Cloud conversionPeriods = input(9, minval=1, title="Conversion Line Length") basePeriods = input(26, minval=1, title="Base Line Length") laggingSpan2Periods = input(52, minval=1, title="Lagging Span 2 Length") displacement = input(26, minval=1, title="Displacement") donchian(len) => avg(lowest(len), highest(len)) conversionLine = donchian(conversionPeriods) baseLine = donchian(basePeriods) leadLine1 = avg(conversionLine, baseLine)[displacement - 1] leadLine2 = donchian(laggingSpan2Periods)[displacement - 1] //macd fast_length = input(title="Fast Length", type=input.integer, defval=12) slow_length = input(title="Slow Length", type=input.integer, defval=26) src = input(title="Source", type=input.source, defval=close) signal_length = input(title="Signal Smoothing", type=input.integer, minval = 1, maxval = 50, defval = 9) sma_source = input(title="Simple MA (Oscillator)", type=input.bool, defval=false) sma_signal = input(title="Simple MA (Signal Line)", type=input.bool, defval=false) fast_ma = sma_source ? sma(src, fast_length) : ema(src, fast_length) slow_ma = sma_source ? sma(src, slow_length) : ema(src, slow_length) macd = fast_ma - slow_ma signal = sma_signal ? sma(macd, signal_length) : ema(macd, signal_length) hist = macd - signal //kd periodK = input(5, title="%K Length", minval=1) smoothK = input(3, title="%K Smoothing", minval=1) periodD = input(3, title="%D Smoothing", minval=1) k = sma(stoch(close, high, low, periodK), smoothK) d = sma(k, periodD) //atr atrlength = input(title="Atr Length", defval=8, minval=1) SMulti = input(title="Stop loss multi Atr", defval=1.0) TMulti = input(title="Take profit multi Atr", defval=1.0) smoothing = input(title="Smoothing", defval="RMA", options=["RMA", "SMA", "EMA", "WMA"]) ma_function(source, length) => if smoothing == "RMA" rma(source, length) else if smoothing == "SMA" sma(source, length) else if smoothing == "EMA" ema(source, length) else wma(source, length) atr = ma_function(tr(true), atrlength) operation_type = input(defval = "Both", title = "Position side", options = ["Long", "Short", "Both"]) operation = operation_type == "Long" ? 1 : operation_type == "Short" ? 2 : 3 showlines = input(true, title="Show sl&tp lines") // MA sma_len = input(100, title="MA Length", type=input.integer) sma = sma(close, sma_len) longCond = crossover(k, 20) and macd > 0 and close > sma and close > leadLine1 and close > leadLine2 shortCond = crossunder(k, 80) and macd < 0 and close < sma and close < leadLine1 and close < leadLine2 entry_price = float(0.0) //set float entry_price := strategy.position_size != 0 or longCond or shortCond ? strategy.position_avg_price : entry_price[1] entry_atr = valuewhen(longCond or shortCond, atr,0) short_stop_level = float(0.0) //set float short_profit_level = float(0.0) //set float long_stop_level = float(0.0) //set float long_profit_level = float(0.0) //set float short_stop_level := entry_price + SMulti * entry_atr short_profit_level := entry_price - TMulti * entry_atr long_stop_level := entry_price - SMulti * entry_atr long_profit_level := entry_price + TMulti * entry_atr // Strategy Backtest Limiting Algorithm i_startTime = input(defval = timestamp("1 Jan 2020 00:00 +0000"), title = "Backtesting Start Time", type = input.time) i_endTime = input(defval = timestamp("31 Dec 2025 23:59 +0000"), title = "Backtesting End Time", type = input.time) timeCond = true if (operation == 1 or operation == 3) strategy.entry("long" , strategy.long , when=longCond and timeCond, alert_message = "Long") strategy.exit("SL/TP", from_entry = "long" , limit = long_profit_level , stop = long_stop_level , alert_message = "Long exit") if (operation == 2 or operation == 3) strategy.entry("short", strategy.short, when=shortCond and timeCond, alert_message="Short") strategy.exit("SL/TP", from_entry = "short", limit = short_profit_level , stop = short_stop_level , alert_message = "Short exit") if time > i_endTime strategy.close_all(comment = "close all", alert_message = "close all") plot(showlines and strategy.position_size <= 0 ? na : long_stop_level, color=color.red, style=plot.style_linebr, linewidth = 2) plot(showlines and strategy.position_size <= 0 ? na : long_profit_level, color=color.lime, style=plot.style_linebr, linewidth = 2) plot(showlines and strategy.position_size >= 0 ? na : short_stop_level, color=color.red, style=plot.style_linebr, linewidth = 2) plot(showlines and strategy.position_size >= 0 ? na : short_profit_level, color=color.lime, style=plot.style_linebr, linewidth = 2) //}template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6