Turtle Trading Decision System

Author: ChaoZhang, Date: 2024-02-29 14:28:25



The Turtle Trading Decision System is a trend-following trading strategy based on the breakout theory. It generates trading signals by moving averages of highest and lowest prices over specific periods to identify potential trends. Trading signals are generated when prices break out above or below the highest or lowest prices over the specified periods. The strategy also incorporates trailing stops, pyramiding, and money management modules to form a relatively complete decision system.

Strategy Principle

The core strategy signals of the Turtle Trading Decision System are generated by comparing the price with the highest prices over N1 periods and the lowest prices over N2 periods. A long signal is generated when the price crosses above the highest price over N1 periods. A short signal is generated when the price crosses below the lowest price over N2 periods. The shutdown mode is used to control new signal generation.

After opening a position, the price will be compared with the stop loss price in real time to generate trailing stop signals. Also, compare the price with the add-on line to generate pyramiding signals. Both stop loss price and add-on line are related to ATR.

When opening a position each time, the position unit is calculated by taking a certain percentage of the initial capital to avoid the impact of a single loss on the total capital. Single losses are limited within a certain range.

Advantage Analysis

The Turtle Trading Decision System has the following advantages:

  1. Capture potential trends: By comparing prices with highest and lowest prices over periods to determine potential trend directions, potential price trends can be captured earlier.

  2. Risk management: Use money management and stop loss to control single and overall loss risks.

  3. Pyramiding management: Appropriate pyramiding can obtain additional profits from trends.

  4. Integrity: Combining money management, stop loss management and pyramiding management makes the decision system more complete.

  5. Simple and clear: The signal generation rules are simple and straightforward, easy to understand and verify.

Risk Analysis

The Turtle Trading Decision System also has some risks:

  1. False breakout risk: Prices may have false breakouts above or below the highest or lowest prices, causing wrong signals. Parameters can be adjusted appropriately to filter out some false breakouts.

  2. Trend reversal risk: There is a risk that the loss increases after pyramiding when prices reverse. The number of pyramiding should be limited appropriately and stops losses in time.

  3. Parameter optimization risk: Parameters settings can vary greatly for different markets, parameters should be optimized separately for each market to reduce risks.

Optimization Directions

The Turtle Trading Decision System can also be optimized in the following aspects:

  1. Add filters: Detect the momentum of price breakouts to filter out some false breakouts.

  2. Optimize stop loss strategies: How to reasonably track stop losses and strike a balance between protecting profits and reducing unnecessary stop losses.

  3. Parameter optimization by market: Optimize parameter combinations for the characteristics of different varieties.

  4. Add machine learning: Use machine learning algorithms to assist in judging trend directions.


The Turtle Trading Decision System judges the potential trend direction by comparing prices with the highest and lowest prices over specified periods, and constructs the entire decision system with risk management modules. It has strong trend tracking capability, and also has some risks of false breakouts and parameter optimization. This strategy can serve as a basic model for quantitative trading, and be expanded and optimized on this basis to develop appropriate decision systems for yourself.

start: 2024-01-29 00:00:00
end: 2024-02-28 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © 李和邪 
// 本脚本所有内容只适用于交流学习,不构成投资建议,所有后果自行承担。
strategy(title='Turtle Trading Strategy@lihexie',
   initial_capital = 1000,
   default_qty_type = strategy.percent_of_equity,
   slippage = 0,
   commission_type = strategy.commission.percent,
   commission_value = 0.05)

// 输入参数
from_date = input(timestamp("2013-01-01T00:00:00+08:00"), "From Date/开始日期")
end_date = input(timestamp("2024-08-01T00:00:00+08:00"), "To Date/结束日期")
valid_date() => true
current_mode = input.string("Mode 1", "Enter Mode/进场系统",['Mode 1','Mode 2'])
// mode 1
entry_length = input.int(20, 'Entry Length/系统1进场长度', minval=1)  // 进场长度
exit_length = input.int(10, 'Exit Length/系统2出场长度', minval=1)  // 出场长度
// mode 2
entry_length_mode2 = input.int(55, 'Mode2 Entry Length/系统2进场长度', minval=1)  // 进场长度
exit_length_mode2 = input.int(20, 'Mode2 Exit Length/系统2出场长度', minval=1) 
atr_period = input.int(14, "ATR Period/计算ATR的周期", minval=1)  // ATR周期
risk_per_trade = input.float(0.02, "Risk Per Trade/每笔交易的风险,0.02就是2%", minval=0.001, maxval=1)  // 每笔交易的风险
initial_stop_atr_multiple = input.float(2, "Initial Stop ATR Multiple/止损使用的ATR倍数", minval=0.1, maxval=10)  // 初始止损ATR倍数
pyramid_atr_multiple = input.float(0.5, "Pyramid ATR Multiple/加仓使用的ATR倍数", minval=0.1, maxval=10)  // 加仓ATR倍数
max_units = input.int(4, "Max Units/最大头寸单位数", minval=1, maxval=10)  // 最大头寸单位数

highlighting = input(title='Highlighter On/Off ?/是否高亮显示', defval=true)  // 是否高亮显示

// 初始化变量
var int units = 0
var float trailing_stop_long = na
var float trailing_stop_short = na
var float real_entry_price_long = na
var float real_entry_price_short = na
var float add_unit_price_long = na
var float add_unit_price_short = na
var bool last_trade_win = false
// 计算ATR
atr = ta.atr(atr_period)

// 计算单位大小
unit_size = (strategy.equity * risk_per_trade) / (initial_stop_atr_multiple * atr)

// 切换模式
mode_signal = current_mode == "Mode 1" ? (last_trade_win==false?true:false) : true

float entry_price_long = na
float entry_price_short = na
float exit_price_long = na
float exit_price_short = na
// 计算进场和出场价格
if current_mode == "Mode 1"
    entry_price_long := ta.highest(entry_length)
    entry_price_short := ta.lowest(entry_length)
    exit_price_long := ta.lowest(exit_length)
    exit_price_short := ta.highest(exit_length)
    entry_price_long := ta.highest(entry_length_mode2)
    entry_price_short := ta.lowest(entry_length_mode2)
    exit_price_long := ta.lowest(exit_length_mode2)
    exit_price_short := ta.highest(exit_length_mode2)

// 计算止损价格
stop_price_long = entry_price_long - (initial_stop_atr_multiple * atr)
stop_price_short = entry_price_short + (initial_stop_atr_multiple * atr)

// 交易逻辑
// 生成买入和卖出信号
long_signal = ta.crossover(close, entry_price_long[1]) and strategy.position_size==0 and valid_date()
short_signal = ta.crossunder(close, entry_price_short[1]) and strategy.position_size==0 and valid_date()
// 生成出场信号
exit_long_signal = ta.crossunder(close, exit_price_long[1]) and strategy.position_size > 0 and valid_date()
exit_short_signal = ta.crossover(close, exit_price_short[1]) and strategy.position_size < 0 and valid_date()

if long_signal 
    if mode_signal
        strategy.entry("Long", strategy.long, qty=unit_size, stop=stop_price_long)
        units := 1
        trailing_stop_long := stop_price_long
        real_entry_price_long := close
        add_unit_price_long := real_entry_price_long+pyramid_atr_multiple*atr
if short_signal 
    if mode_signal
        strategy.entry("Short", strategy.short, qty=unit_size, stop=stop_price_short)
        units := 1
        trailing_stop_short := stop_price_short
        real_entry_price_short := close
        add_unit_price_short := real_entry_price_short-pyramid_atr_multiple*atr
// 出场逻辑
if exit_long_signal
    last_trade_win := strategy.position_avg_price<close?true:false
    units := 0
    real_entry_price_long := na
    add_unit_price_long := na
    trailing_stop_long := na
if exit_short_signal
    last_trade_win := strategy.position_avg_price>close?true:false
    units := 0
    real_entry_price_short := na
    add_unit_price_short := na
    trailing_stop_short := na

// 生成加仓信号
add_unit_signal = (close > add_unit_price_long or close < add_unit_price_short) and units[1] < max_units and valid_date()
// 加仓逻辑
if add_unit_signal
    if strategy.position_size > 0
        strategy.entry("AL", strategy.long, qty=unit_size)
        real_entry_price_long := close
        add_unit_price_long := real_entry_price_long+pyramid_atr_multiple*atr
        trailing_stop_long := real_entry_price_long - (initial_stop_atr_multiple * atr)
    if strategy.position_size < 0
        strategy.entry("AS", strategy.short, qty=unit_size)
        real_entry_price_short := close
        add_unit_price_short := real_entry_price_short-pyramid_atr_multiple*atr
        trailing_stop_short := real_entry_price_short + (initial_stop_atr_multiple * atr)
    units := units + 1

// 移动止损逻辑
trailing_stop_long_signal = ta.crossunder(close, trailing_stop_long) and strategy.position_size > 0 and valid_date()
trailing_stop_short_signal = ta.crossover(close, trailing_stop_short) and strategy.position_size < 0 and valid_date()

if trailing_stop_long_signal
    last_trade_win := strategy.position_avg_price<close?true:false
    units := 0
    real_entry_price_long := na
    add_unit_price_long := na
    trailing_stop_long := na
if trailing_stop_short_signal
    last_trade_win := strategy.position_avg_price>close?true:false
    units := 0
    real_entry_price_short := na
    add_unit_price_short := na
    trailing_stop_short := na

// 美化图表
plot_entry_lowest = plot(entry_price_short, 'Lower', color=color.new(#0094FF, 0))  // 绘制进场最低线
plot_entry_highest = plot(entry_price_long, 'Upper', color=color.new(#0094FF, 0))  // 绘制进场最高线
entry_line = ta.barssince(short_signal) <= ta.barssince(long_signal) ? entry_price_short : entry_price_long  // 进场线
exit_line = ta.barssince(short_signal) <= ta.barssince(long_signal) ? exit_price_short : exit_price_long  // 出场线
plot(entry_line, title='Trend Line', color=color.new(#ff52f1, 0), linewidth=2)  // 绘制趋势线
plot_exit = plot(exit_line, title='Exit Line', color=color.new(color.blue, 0), linewidth=1, style=plot.style_circles)  // 绘制出场线

entry_long_color = highlighting and strategy.position_size>0 ? color.new(color.green, transp = 88) : na
entry_short_color = highlighting and strategy.position_size<0 ? color.new(color.red, transp = 88) : na
fill(plot_entry_highest, plot_exit, color=entry_long_color, title='Background') // 高亮多头趋势
fill(plot_entry_lowest, plot_exit, color=entry_short_color, title='Background') // 高亮空头趋势