该策略结合了Hull移动平均线(HMA)、移动平均线收敛发散指标(MACD)、平均真实范围(ATR)、相对强弱指数(RSI)、能量潮(OBV)和成交量移动平均线等多个技术指标,通过这些指标的综合分析,识别市场趋势和潜在的进场机会。同时,该策略还采用了金字塔加仓、动态止损止盈以及移动止损等风险管理手段,力求在把握趋势机会的同时,严格控制风险。
该策略通过多指标组合、自适应仓位管理、金字塔加仓、动态止损止盈等方法,在把握趋势机会的同时严格控制风险,具有一定的稳健性和盈利能力。但策略也存在参数优化、市场环境变化、黑天鹅事件等风险,需要在实际应用中不断优化和完善。未来可以考虑从动态参数优化、多市场扩展、基本面结合、市场情绪分析和风险控制优化等方面对策略进行改进,以提高策略的适应性和稳健性。
/*backtest
start: 2023-04-06 00:00:00
end: 2024-04-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
strategy("Enhanced Trading Strategy v5 with Visible SL/TP", overlay=true)
// Input settings
hma_length = input(9, title="HMA Length")
fast_length = input(12, title="MACD Fast Length")
slow_length = input(26, title="MACD Slow Length")
siglen = input(9, title="Signal Smoothing")
atr_length = input(14, title="ATR Length")
rsi_length = input(14, title="RSI Length")
obv_length = input(10, title="OBV Length")
volume_ma_length = input(10, title="Volume MA Length")
// Pyramiding inputs
max_pyramid_positions = input(3, title="Max Pyramid Positions")
pyramid_factor = input(0.5, title="Pyramid Factor")
// Risk and Reward Management Inputs
risk_per_trade = input(1.0, title="Risk per Trade (%)")
atr_multiplier_for_sl = input(1.5, title="ATR Multiplier for Stop Loss")
atr_multiplier_for_tp = input(3.0, title="ATR Multiplier for Take Profit")
trailing_atr_multiplier = input(2.0, title="ATR Multiplier for Trailing Stop")
// Position sizing functions
calc_position_size(equity, risk_pct, atr) =>
pos_size = (equity * risk_pct / 100) / (atr_multiplier_for_sl * atr)
pos_size
calc_pyramid_size(current_size, max_positions) =>
pyramid_size = current_size * (max_positions - strategy.opentrades) / max_positions
pyramid_size
// Pre-calculate lengths for HMA
half_length = ceil(hma_length / 2)
sqrt_length = round(sqrt(hma_length))
// Calculate indicators
hma = wma(2 * wma(close, half_length) - wma(close, hma_length), sqrt_length)
my_obv = cum(close > close[1] ? volume : close < close[1] ? -volume : 0)
obv_sma = sma(my_obv, obv_length)
[macd_line, signal_line, _] = macd(close, fast_length, slow_length, siglen)
atr = atr(atr_length)
rsi = rsi(close, rsi_length)
vol_ma = sma(volume, volume_ma_length)
// Conditions
long_condition = crossover(macd_line, signal_line) and my_obv > obv_sma and rsi > 50 and volume > vol_ma
short_condition = crossunder(macd_line, signal_line) and my_obv < obv_sma and rsi < 50 and volume > vol_ma
// Strategy Entry with improved risk-reward ratio
var float long_take_profit = na
var float long_stop_loss = na
var float short_take_profit = na
var float short_stop_loss = na
if (long_condition)
size = calc_position_size(strategy.equity, risk_per_trade, atr)
strategy.entry("Long", strategy.long, qty = size)
long_stop_loss := close - atr_multiplier_for_sl * atr
long_take_profit := close + atr_multiplier_for_tp * atr
if (short_condition)
size = calc_position_size(strategy.equity, risk_per_trade, atr)
strategy.entry("Short", strategy.short, qty = size)
short_stop_loss := close + atr_multiplier_for_sl * atr
short_take_profit := close - atr_multiplier_for_tp * atr
// Drawing the SL/TP lines
// if (not na(long_take_profit))
// line.new(bar_index[1], long_take_profit, bar_index, long_take_profit, width = 2, color = color.green)
// line.new(bar_index[1], long_stop_loss, bar_index, long_stop_loss, width = 2, color = color.red)
// if (not na(short_take_profit))
// line.new(bar_index[1], short_take_profit, bar_index, short_take_profit, width = 2, color = color.green)
// line.new(bar_index[1], short_stop_loss, bar_index, short_stop_loss, width = 2, color = color.red)
// Pyramiding logic
if (strategy.position_size > 0)
if (close > strategy.position_avg_price * (1 + pyramid_factor))
strategy.entry("Long Add", strategy.long, qty = calc_pyramid_size(strategy.position_size, max_pyramid_positions))
if (strategy.position_size < 0)
if (close < strategy.position_avg_price * (1 - pyramid_factor))
strategy.entry("Short Add", strategy.short, qty = calc_pyramid_size(-strategy.position_size, max_pyramid_positions))
// Trailing Stop
strategy.exit("Trailing Stop Long", "Long", trail_points = atr * trailing_atr_multiplier, trail_offset = atr * trailing_atr_multiplier)
strategy.exit("Trailing Stop Short", "Short", trail_points = atr * trailing_atr_multiplier, trail_offset = atr * trailing_atr_multiplier)
// Plots
plot(hma, title="HMA", color=color.blue)
plot(obv_sma, title="OBV SMA", color=color.orange)
hline(0, "Zero Line", color=color.gray, linestyle=hline.style_dotted)
plotshape(long_condition, title="Long Entry", location=location.belowbar, color=color.green, style=shape.labelup, text="Long")
plotshape(short_condition, title="Short Entry", location=location.abovebar, color=color.red, style=shape.labeldown, text="Short")