
本策略是一个基于机器学习算法K近邻(KNN)的自适应参数化趋势跟踪系统。该策略通过KNN算法动态调整趋势跟踪参数,结合移动平均线进行交易信号的生成。系统能够根据市场环境的变化自动调整策略参数,提高策略的适应性和稳定性。该策略采用了机器学习方法来优化传统的趋势跟踪策略,是定量投资领域技术与创新的结合。
策略的核心原理是利用KNN算法对历史价格数据进行分析,通过计算当前市场状态与历史数据的相似度来预测价格走势。具体实现步骤如下: 1. 设定观察窗口大小和K值,收集历史价格数据形成特征向量 2. 计算当前价格序列与历史数据之间的欧式距离 3. 选择K个最相似的历史价格序列作为近邻样本 4. 分析这K个近邻样本的后续价格变动 5. 结合移动平均线,根据近邻样本的平均价格变化生成交易信号 当K个近邻样本的平均价格变化为正且当前价格位于移动平均线上方时,系统生成做多信号;反之则生成做空信号。
该策略创新性地将KNN算法应用于趋势跟踪交易中,通过机器学习方法优化传统技术分析策略。策略具有较强的自适应性和灵活性,能够根据市场环境动态调整参数。虽然存在计算复杂度高和参数敏感等风险,但通过合理的优化和风险控制措施,策略仍具有较好的应用价值。建议投资者在实际应用中,注意根据市场特点调整参数,并结合其他分析方法进行交易决策。
/*backtest
start: 2024-10-01 00:00:00
end: 2024-10-31 23:59:59
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("Trend Following Strategy with KNN", overlay=true,commission_value=0.03,currency='USD', commission_type=strategy.commission.percent,default_qty_type=strategy.cash)
// Input parameters
k = input.int(5, title="K (Number of Neighbors)", minval=1) // Number of neighbors for KNN algorithm
window_size = input.int(20, title="Window Size", minval=1) // Window size for feature vector calculation
ma_length = input.int(50, title="MA Length", minval=1) // Length of the moving average
// Calculate moving average
ma = ta.sma(close, ma_length)
// Initialize variables
var float[] features = na
var float[] distances = na
var int[] nearest_neighbors = na
if bar_index >= window_size - 1 // Ensure there is enough historical data
features := array.new_float(0) // Keep only the current window data
for i = 0 to window_size - 1
array.push(features, close[i])
// Calculate distances
distances := array.new_float(0) // Clear the array for each calculation
for i = 0 to window_size - 1 // Calculate the distance between the current price and all prices in the window
var float distance = 0.0
for j = 0 to window_size - 1
distance += math.pow(close[j] - array.get(features, j), 2)
distance := math.sqrt(distance)
array.push(distances, distance)
// Find the nearest neighbors
if array.size(distances) > 0 and array.size(distances) >= k
nearest_neighbors := array.new_int(0)
for i = 0 to k - 1
var int min_index = -1
var float min_distance = na
for j = 0 to array.size(distances) - 1
if na(min_distance) or array.get(distances, j) < min_distance
min_index := j
min_distance := array.get(distances, j)
if min_index != -1
array.push(nearest_neighbors, min_index)
array.remove(distances, min_index) // Remove the processed neighbor
// Calculate the average price change of the neighbors
var float average_change = 0.0
if array.size(nearest_neighbors) > 0
for i = 0 to array.size(nearest_neighbors) - 1
var int index = array.get(nearest_neighbors, i)
// Ensure index + 1 is within range
if index + 1 < bar_index
average_change += (close[index] - close[index + 1])
average_change := average_change / array.size(nearest_neighbors)
// Generate trading signals
if average_change > 0 and close > ma
strategy.entry("Long", strategy.long)
else if average_change < 0 and close < ma
strategy.entry("Short", strategy.short)