该策略是一个结合了伽马权重平均价格(GWAP)和动量分析的量化交易系统。它通过对历史价格数据进行伽马加权处理,并结合短期动量指标来预测价格走势。策略的核心在于利用伽马因子对近期价格进行更高的权重分配,从而提高对市场近期走势的敏感度。
策略主要基于两个核心理论:动量效应和伽马权重定价。在动量方面,策略利用了金融市场中价格趋势延续的特性;在权重方面,通过伽马因子(取值范围0.5-1.5)对历史价格进行指数级衰减加权。具体实现上,策略通过计算GWAP作为基准价格,当价格位于GWAP之上且连续三个周期呈上涨趋势时开立多仓,反之则开立空仓。
该策略通过结合伽马权重和动量分析,实现了对市场趋势的智能跟踪。其核心优势在于能够根据市场状况动态调整权重分配,同时保持了较高的计算效率。虽然存在一定的市场风险和参数敏感性问题,但通过持续优化和完善,策略具有良好的应用前景。
/*backtest
start: 2024-02-18 00:00:00
end: 2025-02-16 08:00:00
period: 6h
basePeriod: 6h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("BTC Future Gamma-Weighted Momentum Model (BGMM)", shorttitle="BGMM", overlay=true,
default_qty_type=strategy.cash, default_qty_value=50000,
slippage=1, commission_value=0.01)
// Inputs
length = input.int(60, "Length for GWAP Calculation")
gamma_factor = input.float(0.75, "Gamma Weight Factor", minval=0.5, maxval=1.5, step=0.01)
// Helper Functions
var float cumulative_weighted_price = na
var float cumulative_weight = na
price = (high + low + close) / 3 // Typical price as a baseline
gamma_weights = array.new_float(length, 0.0)
price_series = array.new_float(length, na)
// Populate Arrays for Calculation
if bar_index >= length
for i = 0 to length - 1
weighted_gamma = math.pow(gamma_factor, i)
array.set(gamma_weights, i, weighted_gamma)
array.set(price_series, i, close[i])
// Compute GWAP
weighted_sum = 0.0
weight_total = 0.0
for i = 0 to length - 1
w = array.get(gamma_weights, i)
p = array.get(price_series, i)
weighted_sum := weighted_sum + p * w
weight_total := weight_total + w
GWAP = weight_total != 0 ? weighted_sum / weight_total : na
plot(GWAP, color=color.red, title="Gamma Weighted Average Price")
// Conditions for Trade Signals
long_condition = close > GWAP and close[1] > close[2] and close[2] > close[3]
short_condition = close < GWAP and close[1] < close[2] and close[2] < close[3]
// Strategy Logic
if long_condition
strategy.entry("Long", strategy.long)
if short_condition
strategy.entry("Short", strategy.short)