
Die Gold-Cross-Trading-Strategie ist eine Trend-Tracking-Strategie mit mittlerer und langer Linie. Sie identifiziert die Trendrichtung des Aktienpreises durch die Berechnung der SR-Indikatoren und der SR-Signal-Indikatoren und erzeugt in Verbindung mit einem neuronalen Netzwerk einen Trendkanal, um Trend-Tracking-Operationen zu realisieren.
Die Kernindikatoren der Strategie sind der SR-Indikator und der SR-Signal-Indikator. Der SR-Indikator ist eine Sekundärsynthese aus dem WMA-Meanline mit dem Parameter 8 Perioden und dem SMA-Meanline. Der SR-Signal-Indikator ist der SR-Indikator mit dem Parameter 20 Perioden.
Die Strategie verwendet Neuralnetz-Algorithmen, um automatisch die oberen und unteren Grenzen des Aktienpreises zu erstellen, um einen Adaptionskanal zu bilden. Die oberen Grenzen werden mit den historischen Maximalwerten des SR-Indikators als Input und die unteren Grenzen mit den historischen Minimalwerten als Input erfasst, und dann wird die Regressionskurve als die unteren Grenzen des Kanals berechnet. Die Kanalkurve wird nach einer Adaptionslinear-Regression-Schwankung glatter.
Wenn der SR-Indikator auf dem SR-Signal durchläuft, erzeugt er ein Kaufsignal; wenn der SR-Indikator unter dem SR-Signal durchläuft, erzeugt er ein Verkaufsignal. Nach dem Ausgabe des Plus-Low-Signals entscheidet die Beziehung zwischen dem Aktienpreis und der oberen und unteren Grenze des Kanals über die Stop-Loss-Stopposition.
Die Strategie basiert hauptsächlich auf Trend-Tracking und beinhaltet folgende Hauptrisiken:
Um das Risiko zu kontrollieren, empfiehlt es sich, andere Strategien zu kombinieren und einzelne Strategien zu vermeiden. Gleichzeitig werden die Parameter-Einstellungen optimiert, um sie an unterschiedliche Marktbedingungen anzupassen.
Diese Strategie kann in folgenden Bereichen optimiert werden:
Optimierung der Parameter der SR- und Signalindikatoren zur Steigerung der Stabilität des Kreuzsignals;
Optimierung der Längenzyklen des adaptiven Kanals und Glättung der Kanalkurve;
Zusätzliche Filterindikatoren, um Fehlverhalten zu vermeiden, wie z. B. Energieindikatoren, Volatilitätsindikatoren usw.
In Kombination mit Deep-Learning-Algorithmen optimiert die Channel-Kurve in Echtzeit und erhöht die Anpassungsfähigkeit.
Die Gold-Cross-Trading-Strategie ist eine quantitative Strategie, mit der sich langfristige Trends im Zentrum effektiv verfolgen lassen. Die Wahrscheinlichkeit, dass die Trendrichtung korrekt beurteilt wird, ist hoch, die Risiken sind gering. Mit dem großen Spielraum für die Optimierung von Algorithmusmodellen wird die Strategie zu einem leistungsfähigen Werkzeug für die Verfolgung von Trendänderungen in Aktien werden.
/*backtest
start: 2023-11-15 00:00:00
end: 2023-11-22 00:00:00
period: 30m
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
//
// ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ //
strategy(title = " Strategy PyramiCover",
shorttitle = "S-PC",
overlay = true,
precision = 8,
calc_on_order_fills = true,
calc_on_every_tick = true,
backtest_fill_limits_assumption = 0,
default_qty_type = strategy.fixed,
default_qty_value = 2,
initial_capital = 10000,
pyramiding=50,
currency = currency.USD,
linktoseries = true)
//
// ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ //
backTestSectionFrom = input(title = "═══════════════ From ═══════════════", defval = true, type = input.bool)
FromMonth = input(defval = 1, title = "Month", minval = 1)
FromDay = input(defval = 1, title = "Day", minval = 1)
FromYear = input(defval = 2014, title = "Year", minval = 2014)
backTestSectionTo = input(title = "════════════════ To ════════════════", defval = true, type = input.bool)
ToMonth = input(defval = 31, title = "Month", minval = 1)
ToDay = input(defval = 12, title = "Day", minval = 1)
ToYear = input(defval = 9999, title = "Year", minval = 2014)
backTestPeriod() => (time > timestamp(FromYear, FromMonth, FromDay, 00, 00)) and (time < timestamp(ToYear, ToMonth, ToDay, 23, 59))
//
// ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ //
per = input(14,title="🔹 Length")
//
up = 0.0
nup= 0.0
lowl = 0.0
nin = 0.0
//
srl=wma(close,8)
srr = sma(close,8)
sr = 2*srl - srr
//
srsl=wma(close,20)
srsr= sma(close,20)
srsignal = 2*srsl - srsr
//
if sr>srsignal
up := highest(sr,round(150))
nup :=highest(srsignal,round(20))
else
up := highest(srsignal,round(150))
nup := highest(sr,round(20))
//
if sr<srsignal
lowl := lowest(sr,round(150))
nin := lowest(srsignal,round(20))
else
lowl := lowest(sr,round(150))
nin := lowest(srsignal,round(20))
//reg alexgrover
f_reg(src,length)=>
x = bar_index
y = src
x_ = sma(x, length)
y_ = sma(y, length)
mx = stdev(x, length)
my = stdev(y, length)
c = correlation(x, y, length)
slope = c * (my / mx)
inter = y_ - slope * x_
reg = x * slope + inter
reg
//
up_=f_reg(up,per)
lowl_=f_reg(lowl,per)
nup_=f_reg(nup,per)
nin_=f_reg(nin,per)
//
plot(sr, title='SR', color=color.green, linewidth=2, style=plot.style_line,transp=0)
plot(srsignal, title='SR-Signal', color=color.red, linewidth=2, style=plot.style_line,transp=0)
plot(up_, title='Upper limit', color=color.blue, linewidth=3, style=plot.style_line,transp=0)
plot(lowl_, title='Lower limit', color=color.blue, linewidth=3, style=plot.style_line,transp=0)
a=plot(nup_, title='Neuronal Upper', color=color.gray, linewidth=1, style=plot.style_line,transp=0)
b=plot(nin_, title='Neuronal Lower', color=color.gray, linewidth=1, style=plot.style_line,transp=0)
fill(a, b, color=color.gray)
plotshape(crossunder(sr,nup_)? sr+atr(20):na, title="Sell", text="🐻", location=location.absolute, style=shape.labeldown, size=size.tiny, color=color.red, textcolor=color.black,transp=0)
plotshape(crossover(sr,nin_)? sr-atr(20):na, title="Buy", text="🐂", location=location.absolute, style=shape.labelup, size=size.tiny, color=color.green, textcolor=color.black,transp=0)
//
// ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ //
if backTestPeriod()
strategy.entry("Buy", true, 1, when = crossover(sr,nin_))
strategy.entry("Short", false, 1, when = crossunder(sr,nup_))