Renditetheorie Volatilitätsindex Quantitative Strategie


Erstellungsdatum: 2024-02-05 13:54:34 zuletzt geändert: 2024-02-05 13:54:34
Kopie: 0 Klicks: 583
1
konzentrieren Sie sich auf
1617
Anhänger

Renditetheorie Volatilitätsindex Quantitative Strategie

Überblick

Die Strategie nutzt die Bewertung von technischen Indikatoren und wählt dynamisch die Zeit für den Kauf und Verkauf, indem sie mit den Moving Averages verglichen wird. Die Strategie enthält sowohl Long- als auch Leerpositionen, die individuell geöffnet oder geschlossen werden können. Die Strategie ist für langfristige, risikoarme Positionsgeschäfte geeignet.

Strategieprinzip

Die Strategie kombiniert mehrere Technik-Indikatoren und Rating-Methoden, um die Marktzeit in Echtzeit zu bewerten. Sie umfasst hauptsächlich folgende Schritte:

  1. Berechnen Sie mehrere Moving Averages, darunter SMA, EMA, Hull MA und den gewichteten Moving Average VWMA. Bewerten Sie den Leerstand durch einen Vergleich mit dem aktuellen Preis.
  2. Berechnen Sie eine Reihe von Schwingungsindikatoren, einschließlich RSI, CCI, MACD, William Index% R, Zufallsindikatoren usw. Beurteilen Sie Schwingungsindikatoren, um die Differenz zwischen den Leerlagen zu beurteilen, und beurteilen Sie den Grad der Leerheit.
  3. Die Bewertung der technischen Indikatoren kombiniert die Ergebnisse der beiden oben genannten Aspekte der Indikatoren und ergibt ein endgültiges Betriebssignal. Ein Signal mit einem absoluten Wert von mehr als 0,5 ist ein starkes Signal und 0,1-0,5 ist ein schwaches Signal.
  4. Die Strategie kann je nach letztendlichem Betriebssignal über- oder unterlaufen werden. Die Stop-Loss- und Stopp-Exit-Logik kann eingestellt werden.

Der Vorteil der Strategie besteht darin, dass die Indikator-Rating-Methode eine umfassendere Einschätzung der Marktzeit ermöglicht und eine stärkere Zuverlässigkeit als ein einzelner Indikator bietet. Darüber hinaus können die Kategorien der Rating-Indikatoren durch benutzerdefinierte Parameter frei gewählt werden, um die Strategie anzupassen.

Analyse der Stärken

  1. Die Kombination von zahlreichen technischen Indikatoren ermöglicht eine umfassendere und zuverlässigere Bewertung der Marktzeit
  2. Dynamische Stop-Loss- und Stop-Stopp-Einstellungen helfen, das Risiko von Verlusten zu senken
  3. Benchmark-Bewertungskomponenten können angepasst werden, um die Strategie individuell zu handhaben
  4. Unterstützung von Über- und Unternehmungen, um sich besser an die Marktbedingungen anzupassen
  5. Die Option, eine bestimmte Richtung zu aktivieren oder nicht, reduziert die Anzahl der unnötigen Transaktionen

Risikoanalyse

  1. Indikatoren als Entscheidungsgrundlage sind in sich selbst etwas subjektiv.
  2. Einige der Schwankungsindikatoren sind ungenau, um Innovationshoch- und Tiefstand zu bestimmen.
  3. Die Gewichtung der technischen Indikatoren muss detailliert bewertet werden, um die Bewertung zu optimieren.
  4. Die Berechnung von Massenindikatoren erhöht die Strategieberechnung und kann die Betriebseffizienz beeinträchtigen
  5. Aufmerksamkeit auf die Gesamtverluste in der langen Laufzeit und Vermeidung von Überhandelungen

Die wichtigste Lösung für die oben genannten Risiken besteht darin, die Gewichtung der Ratingindikatoren zu optimieren, die bevorzugten Parameter auf der Grundlage von wiederholten Tests mit historischen Daten auszuwählen. Eine angemessene Verringerung der Anzahl der Ratingindikatoren kann auch die Betriebseffizienz verbessern.

Optimierungsrichtung

Diese Strategie kann in folgenden Bereichen optimiert werden:

  1. Bewertung der Effektivität jeder Technik und Optimierung der Auswahl der Indikatoren in der Bewertung
  2. Anpassung der Ratinggewichte und der Signalstärke an die Grenzwerte der technischen Indikatoren
  3. Optimierung der Parameter der mobilen Stop-Loss-Stopp, um das Handelsrisiko weiter zu kontrollieren
  4. Einstellung der optimalen Parameterwerte für die verschiedenen Sorten
  5. Hinzufügen von Signalen zur Verurteilung von Verurteilungsindikatoren durch Methoden wie maschinelles Lernen

Durch die Optimierung der Parameter kann die Strategie gezielt auf mehrere Marktvarianten angepasst werden, um eine bessere Rendite zu erzielen.

Zusammenfassen

Die Strategie nutzt eine umfassende Anwendung von technischen Indikatoren, um zu beurteilen, wann der Markt zu kurzfristig ist. Die Strategie hat die Vorteile, dass die Indikatoren maßgeschneidert und dynamisch ausgewählt werden können. Die Risiken konzentrieren sich hauptsächlich auf die Subjektivität der Ratingmethode selbst und die Ausfallwahl einiger Indikatoren.

Strategiequellcode
/*backtest
start: 2024-01-05 00:00:00
end: 2024-02-04 00:00:00
period: 3h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy(title="Ratings", shorttitle="Ratings", default_qty_type = strategy.percent_of_equity, default_qty_value = 100, commission_value = 0.1, overlay=true)

//Settings
useLong = input(true, title = "Long")
useShort = input(true, title = "Short")
res = input("", title="Indicator Timeframe", type=input.resolution)
ratingSignal = input(defval = "All", title = "Rating is based on", options = ["MAs", "Oscillators", "All"])
startTime = input(defval = timestamp("01 Jan 2000 00:00 +0000"), title = "Start Time", type = input.time, inline = "time1")
finalTime = input(defval = timestamp("31 Dec 2099 23:59 +0000"), title = "Final Time", type = input.time, inline = "time1")
trueTime = true

// Awesome Oscillator
AO() => 
    sma(hl2, 5) - sma(hl2, 34)
// Stochastic RSI
StochRSI() =>
    rsi1 = rsi(close, 14)
    K = sma(stoch(rsi1, rsi1, rsi1, 14), 3)
    D = sma(K, 3)
    [K, D]
// Ultimate Oscillator
tl() => close[1] < low ? close[1]: low
uo(ShortLen, MiddlLen, LongLen) =>
    Value1 = sum(tr, ShortLen)
    Value2 = sum(tr, MiddlLen)
    Value3 = sum(tr, LongLen)
    Value4 = sum(close - tl(), ShortLen)
    Value5 = sum(close - tl(), MiddlLen)
    Value6 = sum(close - tl(), LongLen)
    float UO = na
    if Value1 != 0 and Value2 != 0 and Value3 != 0
        var0 = LongLen / ShortLen
        var1 = LongLen / MiddlLen
        Value7 = (Value4 / Value1) * (var0)
        Value8 = (Value5 / Value2) * (var1)
        Value9 = (Value6 / Value3)
        UO := (Value7 + Value8 + Value9) / (var0 + var1 + 1)
    UO
// Ichimoku Cloud
donchian(len) => avg(lowest(len), highest(len))
ichimoku_cloud() =>
    conversionLine = donchian(9)
    baseLine = donchian(26)
    leadLine1 = avg(conversionLine, baseLine)
    leadLine2 = donchian(52)
    [conversionLine, baseLine, leadLine1, leadLine2]
    
calcRatingMA(ma, src) => na(ma) or na(src) ? na : (ma == src ? 0 : ( ma < src ? 1 : -1 ))
calcRating(buy, sell) => buy ? 1 : ( sell ? -1 : 0 )
calcRatingAll() =>
    //============== MA =================
    SMA10 = sma(close, 10)
    SMA20 = sma(close, 20)
    SMA30 = sma(close, 30)
    SMA50 = sma(close, 50)
    SMA100 = sma(close, 100)
    SMA200 = sma(close, 200)
    
    EMA10 = ema(close, 10)
    EMA20 = ema(close, 20)
    EMA30 = ema(close, 30)
    EMA50 = ema(close, 50)
    EMA100 = ema(close, 100)
    EMA200 = ema(close, 200)
    
    HullMA9 = hma(close, 9)
    
    // Volume Weighted Moving Average (VWMA)
    VWMA = vwma(close, 20)
    
    [IC_CLine, IC_BLine, IC_Lead1, IC_Lead2] = ichimoku_cloud()
    
    // ======= Other =============
    // Relative Strength Index, RSI
    RSI = rsi(close,14)
    
    // Stochastic
    lengthStoch = 14
    smoothKStoch = 3
    smoothDStoch = 3
    kStoch = sma(stoch(close, high, low, lengthStoch), smoothKStoch)
    dStoch = sma(kStoch, smoothDStoch)
    
    // Commodity Channel Index, CCI
    CCI = cci(close, 20)
    
    // Average Directional Index
    float adxValue = na, float adxPlus = na, float adxMinus = na
    [P, M, V] = dmi(14, 14)
    adxValue := V
    adxPlus := P
    adxMinus := M
    // Awesome Oscillator
    ao = AO()
    
    // Momentum
    Mom = mom(close, 10)
    // Moving Average Convergence/Divergence, MACD
    [macdMACD, signalMACD, _] = macd(close, 12, 26, 9)
    // Stochastic RSI
    [Stoch_RSI_K, Stoch_RSI_D] = StochRSI()
    // Williams Percent Range
    WR = wpr(14)
    
    // Bull / Bear Power
    BullPower = high - ema(close, 13)
    BearPower = low - ema(close, 13)
    // Ultimate Oscillator
    UO = uo(7,14,28)
    if not na(UO)
        UO := UO * 100
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    
    PriceAvg = ema(close, 50)
    DownTrend = close < PriceAvg
    UpTrend = close > PriceAvg
    // calculate trading recommendation based on SMA/EMA
    float ratingMA = 0
    float ratingMAC = 0
    
    if not na(SMA10)
        ratingMA := ratingMA + calcRatingMA(SMA10, close)
        ratingMAC := ratingMAC + 1
    if not na(SMA20)
        ratingMA := ratingMA + calcRatingMA(SMA20, close)
        ratingMAC := ratingMAC + 1
    if not na(SMA30)
        ratingMA := ratingMA + calcRatingMA(SMA30, close)
        ratingMAC := ratingMAC + 1
    if not na(SMA50)
        ratingMA := ratingMA + calcRatingMA(SMA50, close)
        ratingMAC := ratingMAC + 1
    if not na(SMA100)
        ratingMA := ratingMA + calcRatingMA(SMA100, close)
        ratingMAC := ratingMAC + 1
    if not na(SMA200)
        ratingMA := ratingMA + calcRatingMA(SMA200, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA10)
        ratingMA := ratingMA + calcRatingMA(EMA10, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA20)
        ratingMA := ratingMA + calcRatingMA(EMA20, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA30)
        ratingMA := ratingMA + calcRatingMA(EMA30, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA50)
        ratingMA := ratingMA + calcRatingMA(EMA50, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA100)
        ratingMA := ratingMA + calcRatingMA(EMA100, close)
        ratingMAC := ratingMAC + 1
    if not na(EMA200)
        ratingMA := ratingMA + calcRatingMA(EMA200, close)
        ratingMAC := ratingMAC + 1
    
    if not na(HullMA9)
        ratingHullMA9 = calcRatingMA(HullMA9, close)
        ratingMA := ratingMA + ratingHullMA9
        ratingMAC := ratingMAC + 1
    
    if not na(VWMA)
        ratingVWMA = calcRatingMA(VWMA, close)
        ratingMA := ratingMA + ratingVWMA
        ratingMAC := ratingMAC + 1
    
    float ratingIC = na
    if not (na(IC_Lead1) or na(IC_Lead2) or na(close) or na(close[1]) or na(IC_BLine) or na(IC_CLine))
        ratingIC := calcRating(
         IC_Lead1 > IC_Lead2 and close > IC_Lead1 and close < IC_BLine and close[1] < IC_CLine and close > IC_CLine,
         IC_Lead2 > IC_Lead1 and close < IC_Lead2 and close > IC_BLine and close[1] > IC_CLine and close < IC_CLine)
    if not na(ratingIC)
        ratingMA := ratingMA + ratingIC
        ratingMAC := ratingMAC + 1
    
    ratingMA := ratingMAC > 0 ? ratingMA / ratingMAC : na
    
    float ratingOther = 0
    float ratingOtherC = 0
    
    ratingRSI = RSI
    if not(na(ratingRSI) or na(ratingRSI[1]))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(ratingRSI < 30 and ratingRSI[1] < ratingRSI, ratingRSI > 70 and ratingRSI[1] > ratingRSI)
    
    if not(na(kStoch) or na(dStoch) or na(kStoch[1]) or na(dStoch[1]))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(kStoch < 20 and dStoch < 20 and kStoch > dStoch and kStoch[1] < dStoch[1], kStoch > 80 and dStoch > 80 and kStoch < dStoch and kStoch[1] > dStoch[1])
    
    ratingCCI = CCI
    if not(na(ratingCCI) or na(ratingCCI[1]))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(ratingCCI < -100 and ratingCCI > ratingCCI[1], ratingCCI > 100 and ratingCCI < ratingCCI[1])
    
    if not(na(adxValue) or na(adxPlus[1]) or na(adxMinus[1]) or na(adxPlus) or na(adxMinus))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(adxValue > 20 and adxPlus[1] < adxMinus[1] and adxPlus > adxMinus, adxValue > 20 and adxPlus[1] > adxMinus[1] and adxPlus < adxMinus)
    
    if not(na(ao) or na(ao[1]))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(crossover(ao,0) or (ao > 0 and ao[1] > 0 and ao > ao[1] and ao[2] > ao[1]), crossunder(ao,0) or (ao < 0 and ao[1] < 0 and ao < ao[1] and ao[2] < ao[1]))
    
    if not(na(Mom) or na(Mom[1]))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(Mom > Mom[1], Mom < Mom[1])
    
    if not(na(macdMACD) or na(signalMACD))
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + calcRating(macdMACD > signalMACD, macdMACD < signalMACD)
    
    float ratingStoch_RSI = na
    if not(na(DownTrend) or na(UpTrend) or na(Stoch_RSI_K) or na(Stoch_RSI_D) or na(Stoch_RSI_K[1]) or na(Stoch_RSI_D[1]))
        ratingStoch_RSI := calcRating(
         DownTrend and Stoch_RSI_K < 20 and Stoch_RSI_D < 20 and Stoch_RSI_K > Stoch_RSI_D and Stoch_RSI_K[1] < Stoch_RSI_D[1],
         UpTrend and Stoch_RSI_K > 80 and Stoch_RSI_D > 80 and Stoch_RSI_K < Stoch_RSI_D and Stoch_RSI_K[1] > Stoch_RSI_D[1])
    if not na(ratingStoch_RSI)
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + ratingStoch_RSI
    
    float ratingWR = na
    if not(na(WR) or na(WR[1]))
        ratingWR := calcRating(WR < -80 and WR > WR[1], WR > -20 and WR < WR[1])
    if not na(ratingWR)
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + ratingWR
    
    float ratingBBPower = na
    if not(na(UpTrend) or na(DownTrend) or na(BearPower) or na(BearPower[1]) or na(BullPower) or na(BullPower[1]))
        ratingBBPower := calcRating(
         UpTrend and BearPower < 0 and BearPower > BearPower[1],
         DownTrend and BullPower > 0 and BullPower < BullPower[1])
    if not na(ratingBBPower)
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + ratingBBPower
    
    float ratingUO = na
    if not(na(UO))
        ratingUO := calcRating(UO > 70, UO < 30)
    if not na(ratingUO)
        ratingOtherC := ratingOtherC + 1
        ratingOther := ratingOther + ratingUO
    
    ratingOther := ratingOtherC > 0 ? ratingOther / ratingOtherC : na
    
    float ratingTotal = 0
    float ratingTotalC = 0
    if not na(ratingMA)
        ratingTotal := ratingTotal + ratingMA
        ratingTotalC := ratingTotalC + 1
    if not na(ratingOther)
        ratingTotal := ratingTotal + ratingOther
        ratingTotalC := ratingTotalC + 1
    ratingTotal := ratingTotalC > 0 ? ratingTotal / ratingTotalC : na
    
    [ratingTotal, ratingOther, ratingMA, ratingOtherC, ratingMAC]
[ratingTotal, ratingOther, ratingMA, ratingOtherC, ratingMAC]  = security(syminfo.tickerid, res, calcRatingAll())
StrongBound = 0.5
WeakBound = 0.1
getSignal(ratingTotal, ratingOther, ratingMA) =>
    float _res = ratingTotal
    if ratingSignal == "MAs"
        _res := ratingMA
    if ratingSignal == "Oscillators"
        _res := ratingOther
    _res
tradeSignal = getSignal(ratingTotal, ratingOther, ratingMA)

dynSLpoints(factor) => factor * atr(14) / syminfo.mintick

//Trading
lotLong = useLong and trueTime ? na : 0
lotShort = useShort and trueTime ? na : 0
strategy.entry("long", strategy.long, lotLong, when = tradeSignal > StrongBound)
strategy.entry("short", strategy.short, lotShort, when = tradeSignal < -StrongBound)
strategy.exit("sl/tp", loss = dynSLpoints(3), trail_points = dynSLpoints(5), trail_offset = dynSLpoints(2))

//Cancel all
if time > finalTime
    strategy.close_all()
    strategy.cancel("long")
    strategy.cancel("short")