
Multi-Zeit-Perioden MACD Null-Achs-Kreuz-Umkehr-Strategie durch die Berechnung von MACD-Indikatoren für verschiedene Perioden, Identifizierung von Signalen, die den Preis möglicherweise umkehren, Trend-Tracking-Stopp-Loss-Methode, die Suche nach höherer Kapitalnutzung Effizienz.
Die Strategie berechnet gleichzeitig den SMA für die 3- und 10-Zyklen, baut eine schnelle und langsame Linie auf und berechnet dann die MACD-Indikatoren und die Signallinien. Wenn die Schnelle und die Signallinie eine Aufwärts- oder Abwärts-Null-Achs-Kreuzung auftreten, zeigt dies, dass der Preis einen kritischen Punkt erreicht hat und eine Umkehr möglich ist.
Die Strategie beurteilt Preisschwankungen durch:
Wenn das Umkehrsignal zuverlässig ist, wird die Strategie eingeschaltet, um einen Trend zu verfolgen, um einen höheren Gewinn zu erzielen.
Die Strategie hat folgende Vorteile:
Die Strategie birgt auch einige Risiken:
Das Risiko kann durch folgende Maßnahmen verringert werden:
Die Strategie kann in folgenden Bereichen weiter optimiert werden:
Eine mehrzeitige MACD-Null-Achs-Kreuz-Umkehrstrategie, die Informationen über mehrere Dimensionen wie Preis, Transaktionsvolumen und Schwankungsindikatoren berücksichtigt, um durch mehrere Indikatoren zu entscheiden, wann die Umkehr eingetreten ist, und nach einem profitablen Umsatz rechtzeitig zu stoppen, um einen besseren Gewinn in einer Umkehr zu erzielen. Die Strategie wird durch maschinelles Lernen und Schlüsselpositionsoptimierung weiter verbessert werden, um die Handelsfrequenz und das Risiko zu reduzieren und den Gewinnraum zu erhöhen.
/*backtest
start: 2023-02-11 00:00:00
end: 2024-02-17 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("3 10.0 Oscillator Profile Flagging", shorttitle="3 10.0 Oscillator Profile Flagging", overlay=false)
signalBiasValue = input(title="Signal Bias", defval=0.26)
macdBiasValue = input(title="MACD Bias", defval=0.8)
shortLookBack = input( title="Short LookBack", defval=3)
longLookBack = input( title="Long LookBack", defval=10.0)
takeProfit = input( title="Take Profit", defval=0.8)
stopLoss = input( title="Stop Loss", defval=0.75)
fast_ma = ta.sma(close, 3)
slow_ma = ta.sma(close, 10)
macd = fast_ma - slow_ma
signal = ta.sma(macd, 16)
hline(0, "Zero Line", color = color.black)
buyVolume = volume*((close-low)/(high-low))
sellVolume = volume*((high-close)/(high-low))
buyVolSlope = buyVolume - buyVolume[1]
sellVolSlope = sellVolume - sellVolume[1]
signalSlope = ( signal - signal[1] )
macdSlope = ( macd - macd[1] )
plot(macd, color=color.blue, title="Total Volume")
plot(signal, color=color.orange, title="Total Volume")
intrabarRange = high - low
rsi = ta.rsi(close, 14)
rsiSlope = rsi - rsi[1]
getRSISlopeChange(lookBack) =>
j = 0
for i = 0 to lookBack
if ( rsi[i] - rsi[ i + 1 ] ) > -5
j += 1
j
getBuyerVolBias(lookBack) =>
j = 0
for i = 1 to lookBack
if buyVolume[i] > sellVolume[i]
j += 1
j
getSellerVolBias(lookBack) =>
j = 0
for i = 1 to lookBack
if sellVolume[i] > buyVolume[i]
j += 1
j
getVolBias(lookBack) =>
float b = 0.0
float s = 0.0
for i = 1 to lookBack
b += buyVolume[i]
s += sellVolume[i]
b > s
getSignalBuyerBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] > signalBiasValue
j += 1
j
getSignalSellerBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] < ( 0.0 - signalBiasValue )
j += 1
j
getSignalNoBias(lookBack) =>
j = 0
for i = 1 to lookBack
if signal[i] < signalBiasValue and signal[i] > ( 0.0 - signalBiasValue )
j += 1
j
getPriceRising(lookBack) =>
j = 0
for i = 1 to lookBack
if close[i] > close[i + 1]
j += 1
j
getPriceFalling(lookBack) =>
j = 0
for i = 1 to lookBack
if close[i] < close[i + 1]
j += 1
j
getRangeNarrowing(lookBack) =>
j = 0
for i = 1 to lookBack
if intrabarRange[i] < intrabarRange[i + 1]
j+= 1
j
getRangeBroadening(lookBack) =>
j = 0
for i = 1 to lookBack
if intrabarRange[i] > intrabarRange[i + 1]
j+= 1
j
bool isNegativeSignalReversal = signalSlope < 0.0 and signalSlope[1] > 0.0
bool isNegativeMacdReversal = macdSlope < 0.0 and macdSlope[1] > 0.0
bool isPositiveSignalReversal = signalSlope > 0.0 and signalSlope[1] < 0.0
bool isPositiveMacdReversal = macdSlope > 0.0 and macdSlope[1] < 0.0
bool hasBearInversion = signalSlope > 0.0 and macdSlope < 0.0
bool hasBullInversion = signalSlope < 0.0 and macdSlope > 0.0
bool hasSignalBias = math.abs(signal) >= signalBiasValue
bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0.0 - signalBiasValue )
bool hasSignalBuyerBias = hasSignalBias and signal > 0.0
bool hasSignalSellerBias = hasSignalBias and signal < 0.0
bool hasPositiveMACDBias = macd > macdBiasValue
bool hasNegativeMACDBias = macd < ( 0.0 - macdBiasValue )
bool hasBullAntiPattern = ta.crossunder(macd, signal)
bool hasBearAntiPattern = ta.crossover(macd, signal)
bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 )
bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 )
// 393.60 Profit 52.26% 15m
if ( hasBullInversion and rsiSlope > 1.5 and volume > 300000.0 )
strategy.entry("15C1", strategy.long, qty=10.0)
strategy.exit("TPS", "15C1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)
// 356.10 Profit 51,45% 15m
if ( getVolBias(shortLookBack) == false and rsiSlope > 3.0 and signalSlope > 0)
strategy.entry("15C2", strategy.long, qty=10.0)
strategy.exit("TPS", "15C2", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)
// 124 Profit 52% 15m
if ( rsiSlope < -11.25 and macdSlope < 0.0 and signalSlope < 0.0)
strategy.entry("15P1", strategy.short, qty=10.0)
strategy.exit("TPS", "15P1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)
// 455.40 Profit 49% 15m
if ( math.abs(math.abs(macd) - math.abs(signal)) < .1 and buyVolume > sellVolume and hasBullInversion)
strategy.entry("15P2", strategy.short, qty=10.0)
strategy.exit("TPS", "15P2", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)