
The Multi Timeframe MACD Strategy is a quantitative trading strategy that tracks trends using the MACD indicator across multiple time frames. This strategy generates trading signals by judging whether price trends are consistent across different periods (3 mins, 5 mins, 15 mins, 30 mins).
The core logic of this strategy is to calculate the MACD indicator crossing situation across multiple time frames (3 mins, 5 mins, 15 mins, 30 mins). Firstly, the MACD indicator is calculated on each time frame to judge the price trend (up or down) under that time frame. Then, price trends across multiple time frames are judged comprehensively:
By judging the trend across time frames, short-term market noise can be effectively filtered out, making trading signals more reliable.
This strategy has the following advantages:
This strategy also has the following risks:
Corresponding solutions:
This strategy can be further optimized in the following aspects:
The Multi Timeframe MACD Strategy utilizes the trend judgment capability of the MACD indicator to detect price movements across time frames, which can effectively filter out noise and improve signal quality. This strategy can be flexibly adapted to different products and market environments through parameter tuning and rule optimization, and has strong practicality.
/*backtest
start: 2023-10-28 00:00:00
end: 2023-11-27 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=2
strategy("[RichG] Easy MTF Strategy", overlay=false)
TF_1_time = input("3", "Timeframe 1")
TF_2_time = input("5", "Timeframe 2")
TF_3_time = input("15", "Timeframe 3")
TF_4_time = input("30", "Timeframe 4")
fastLen = input(title="Fast Length", defval=12)
slowLen = input(title="Slow Length", defval=26)
sigLen = input(title="Signal Length", defval=9)
[macdLine, signalLine, _] = macd(close, fastLen, slowLen, sigLen)
width = 5
upcolor = green
downcolor = red
neutralcolor = blue
linestyle = line
TF_1 = request.security(syminfo.tickerid, TF_1_time, open) < request.security(syminfo.tickerid, TF_1_time, close) ? true:false
TF_1_color = TF_1 ? upcolor:downcolor
TF_2 = request.security(syminfo.tickerid, TF_2_time, open) < request.security(syminfo.tickerid, TF_2_time, close) ? true:false
TF_2_color = TF_2 ? upcolor:downcolor
TF_3 = request.security(syminfo.tickerid, TF_3_time, open) < request.security(syminfo.tickerid, TF_3_time, close) ? true:false
TF_3_color = TF_3 ? upcolor:downcolor
TF_4 = request.security(syminfo.tickerid, TF_4_time, open) < request.security(syminfo.tickerid, TF_4_time, close) ? true:false
TF_4_color = TF_4 ? upcolor:downcolor
TF_global = TF_1 and TF_2 and TF_3 and TF_4
TF_global_bear = TF_1 == false and TF_2 == false and TF_3 == false and TF_4 == false
TF_global_color = TF_global ? green : TF_global_bear ? red : white
TF_trigger_width = TF_global ? 6 : width
plot(1, style=linestyle, linewidth=width, color=TF_1_color)
plot(5, style=linestyle, linewidth=width, color=TF_2_color)
plot(10, style=linestyle, linewidth=width, color=TF_3_color)
plot(15, style=linestyle, linewidth=width, color=TF_4_color)
plot(25, style=linestyle, linewidth=4, color=TF_global_color)
exitCondition_Long = TF_global_bear
exitCondition_Short = TF_global
longCondition = TF_global
if (longCondition)
strategy.entry("MTF_Long", strategy.long)
shortCondition = TF_global_bear
if (shortCondition)
strategy.entry("MTF_Short", strategy.short)
strategy.close("MTF_Long", when=exitCondition_Long)
strategy.close("MTF_Short", when=exitCondition_Short)