
The strategy utilizes linear regression and volatility indicators to identify different market states. When the conditions for buying or selling are met, the strategy establishes corresponding long or short positions. Additionally, the strategy allows for parameter optimization and adjustment based on market conditions to adapt to various market environments. The strategy also employs exponential moving averages (EMAs) as additional indicators to confirm trading signals.
The strategy identifies market states using linear regression and volatility indicators, with EMAs as confirmation indicators, constructing an adaptive and logically clear trading strategy. The strategy’s advantages lie in combining trends and volatility while allowing parameter optimization, making it suitable for various market environments. However, the strategy also faces risks such as parameter selection, choppy markets, and black swan events, requiring continuous optimization and improvement in practical applications. Future enhancements can focus on enriching signal sources, optimizing parameter selection, and refining risk control measures to enhance the strategy’s stability and profitability.
/*backtest
start: 2023-05-22 00:00:00
end: 2024-05-27 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © tmalvao
//@version=5
strategy("Regime de Mercado com Regressão e Volatilidade Otimizado", overlay=true)
// Parâmetros para otimização
upperThreshold = input.float(1.0, title="Upper Threshold")
lowerThreshold = input.float(-1.0, title="Lower Threshold")
length = input.int(50, title="Length", minval=1)
// Indicadores de volatilidade
atrLength = input.int(14, title="ATR Length")
atrMult = input.float(2.0, title="ATR Multiplier")
atr = ta.atr(atrLength)
volatility = atr * atrMult
// Calculando a regressão linear usando função incorporada
intercept = ta.linreg(close, length, 0)
slope = ta.linreg(close, length, 1) - ta.linreg(close, length, 0)
// Sinal de compra e venda
buySignal = slope > upperThreshold and close > intercept + volatility
sellSignal = slope < lowerThreshold and close < intercept - volatility
// Entrando e saindo das posições
if (buySignal)
strategy.entry("Buy", strategy.long)
if (sellSignal)
strategy.entry("Sell", strategy.short)
// Indicadores adicionais para confirmação
emaFastLength = input.int(10, title="EMA Fast Length")
emaSlowLength = input.int(50, title="EMA Slow Length")
emaFast = ta.ema(close, emaFastLength)
emaSlow = ta.ema(close, emaSlowLength)
// Confirmando sinais com EMAs
if (buySignal and emaFast > emaSlow)
strategy.entry("Buy Confirmed", strategy.long)
if (sellSignal and emaFast < emaSlow)
strategy.entry("Sell Confirmed", strategy.short)
// Exibindo informações no gráfico
plot(slope, title="Slope", color=color.blue)
plot(intercept, title="Intercept", color=color.red)
plot(volatility, title="Volatility", color=color.green)
hline(upperThreshold, "Upper Threshold", color=color.green, linestyle=hline.style_dotted)
hline(lowerThreshold, "Lower Threshold", color=color.red, linestyle=hline.style_dotted)