
This strategy is a trading system based on multiple technical indicators, integrating CCI, RSI, Stochastic, and MFI indicators with exponential smoothing to build a comprehensive market analysis framework. The strategy uses IFT (Inverse Fisher Transform) to normalize indicator outputs and generates trading decisions through signal synthesis.
The core of the strategy is to provide more reliable trading signals through multi-indicator fusion. The process includes: 1. Calculate and normalize CCI, RSI, Stochastic, and MFI indicators 2. Apply WMA smoothing to indicator values 3. Transform values to a unified interval using IFT 4. Calculate the average of four transformed indicators as final signal 5. Generate long signals when crossing -0.5 and short signals when crossing 0.5 6. Set 0.5% stop-loss and 1% take-profit for risk control
The strategy builds a relatively complete trading system through multi-indicator fusion and signal optimization. Its strengths lie in signal reliability and comprehensive risk control, but parameters still need optimization based on market characteristics. Through the suggested optimization directions, the strategy has the potential to perform better in various market environments.
/*backtest
start: 2024-11-19 00:00:00
end: 2024-12-18 08:00:00
period: 4h
basePeriod: 4h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy('wombocombo', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=100)
// IFTCOMBO Hesaplamaları
ccilength = input.int(5, 'CCI Length')
wmalength = input.int(9, 'Smoothing Length')
rsilength = input.int(5, 'RSI Length')
stochlength = input.int(5, 'STOCH Length')
mfilength = input.int(5, 'MFI Length')
// CCI
v11 = 0.1 * (ta.cci(close, ccilength) / 4)
v21 = ta.wma(v11, wmalength)
INV1 = (math.exp(2 * v21) - 1) / (math.exp(2 * v21) + 1)
// RSI
v12 = 0.1 * (ta.rsi(close, rsilength) - 50)
v22 = ta.wma(v12, wmalength)
INV2 = (math.exp(2 * v22) - 1) / (math.exp(2 * v22) + 1)
// Stochastic
v1 = 0.1 * (ta.stoch(close, high, low, stochlength) - 50)
v2 = ta.wma(v1, wmalength)
INVLine = (math.exp(2 * v2) - 1) / (math.exp(2 * v2) + 1)
// MFI
source = hlc3
up = math.sum(volume * (ta.change(source) <= 0 ? 0 : source), mfilength)
lo = math.sum(volume * (ta.change(source) >= 0 ? 0 : source), mfilength)
mfi = 100.0 - 100.0 / (1.0 + up / lo)
v13 = 0.1 * (mfi - 50)
v23 = ta.wma(v13, wmalength)
INV3 = (math.exp(2 * v23) - 1) / (math.exp(2 * v23) + 1)
// Ortalama IFTCOMBO değeri
AVINV = (INV1 + INV2 + INVLine + INV3) / 4
// Sinyal çizgileri
hline(0.5, color=color.red, linestyle=hline.style_dashed)
hline(-0.5, color=color.green, linestyle=hline.style_dashed)
// IFTCOMBO çizgisi
plot(AVINV, color=color.red, linewidth=2, title='IFTCOMBO')
// Long Trading Sinyalleri
longCondition = ta.crossover(AVINV, -0.5)
longCloseCondition = ta.crossunder(AVINV, 0.5)
// Short Trading Sinyalleri
shortCondition = ta.crossunder(AVINV, 0.5)
shortCloseCondition = ta.crossover(AVINV, -0.5)
// Stop-loss seviyesi (%0.5 kayıp)
stopLoss = strategy.position_avg_price * (1 - 0.005) // Long için
takeProfit = strategy.position_avg_price * (1 + 0.01) // Long için
// Long Strateji Kuralları
if longCondition
strategy.entry('Long', strategy.long)
strategy.exit('Long Exit', 'Long', stop=stopLoss, limit=takeProfit) // Stop-loss eklendi
if longCloseCondition
strategy.close('Long')
// Stop-loss seviyesi (%0.5 kayıp)
stopLossShort = strategy.position_avg_price * (1 + 0.005) // Short için
takeProfitShort = strategy.position_avg_price * (1 - 0.01) // Short için
// Short Strateji Kuralları
if shortCondition
strategy.entry('Short', strategy.short)
strategy.exit('Short Exit', 'Short', stop=stopLossShort, limit=takeProfitShort) // Stop-loss eklendi
if shortCloseCondition
strategy.close('Short')
// Sinyal noktalarını plotlama
plotshape(longCondition, title='Long Signal', location=location.belowbar, color=color.purple, size=size.small)
plotshape(shortCondition, title='Short Signal', location=location.abovebar, color=color.yellow, size=size.small)