
This strategy is a multi-level quantitative trading system based on Bollinger Bands trend divergence and dynamic bandwidth changes. The strategy constructs a complete trading decision framework by monitoring Bollinger Bands width dynamics, price breakouts, and EMA200 coordination. It employs an adaptive volatility tracking mechanism to effectively capture market trend turning points.
The strategy is based on the following key elements: 1. Bollinger Bands calculation using 20-period moving average and 2 standard deviations 2. Trend strength determination through bandwidth changes across three consecutive time points 3. Breakout validation using candle body to bandwidth ratio 4. EMA200 as a medium-long term trend filter 5. Long entry when price breaks above upper band with expanding bandwidth conditions 6. Exit when price breaks below lower band with contracting bandwidth conditions
The strategy builds a robust trading system through Bollinger Bands trend divergence and dynamic bandwidth changes. While performing excellently in trending markets, improvements are needed for ranging markets and parameter optimization. Overall, the strategy demonstrates good practical value and room for expansion.
/*backtest
start: 2019-12-23 08:00:00
end: 2024-12-25 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("BBDIV_Strategy", overlay=true)
// Inputs for Bollinger Bands
length = input.int(20, title="BB Length")
mult = input.float(2.0, title="BB Multiplier")
// Calculate Bollinger Bands
basis = ta.sma(close, length)
deviation = mult * ta.stdev(close, length)
upperBB = basis + deviation
lowerBB = basis - deviation
// Calculate Bollinger Band width
bb_width = upperBB - lowerBB
prev_width = ta.valuewhen(not na(bb_width[1]), bb_width[1], 0)
prev_prev_width = ta.valuewhen(not na(bb_width[2]), bb_width[2], 0)
// Determine BB state
bb_state = bb_width > prev_width and prev_width > prev_prev_width ? 1 : bb_width < prev_width and prev_width < prev_prev_width ? -1 : 0
// Assign colors based on BB state
bb_color = bb_state == 1 ? color.green : bb_state == -1 ? color.red : color.gray
// Highlight candles closed outside BB
candle_size = high - low
highlight_color = (candle_size > bb_width / 2 and close > upperBB) ? color.new(color.green, 50) : (candle_size > bb_width / 2 and close < lowerBB) ? color.new(color.red, 50) : na
bgcolor(highlight_color, title="Highlight Candles")
// Plot Bollinger Bands
plot(upperBB, title="Upper BB", color=bb_color, linewidth=2, style=plot.style_line)
plot(lowerBB, title="Lower BB", color=bb_color, linewidth=2, style=plot.style_line)
plot(basis, title="Middle BB", color=color.blue, linewidth=1, style=plot.style_line)
// Calculate EMA 200
ema200 = ta.ema(close, 200)
// Plot EMA 200
plot(ema200, title="EMA 200", color=color.orange, linewidth=2, style=plot.style_line)
// Strategy logic
enter_long = highlight_color == color.new(color.green, 50)
exit_long = highlight_color == color.new(color.red, 50)
if (enter_long)
strategy.entry("Buy", strategy.long)
if (exit_long)
strategy.close("Buy")
// Display profit at close
if (exit_long)
var float entry_price = na
var float close_price = na
var float profit = na
if (strategy.opentrades > 0)
entry_price := strategy.opentrades.entry_price(strategy.opentrades - 1)
close_price := close
profit := (close_price - entry_price) * 100 / entry_price * 2 * 10 // Assuming 1 pip = 0.01 for XAUUSD
label.new(bar_index, high + (candle_size * 2), str.tostring(profit, format.mintick) + " USD", style=label.style_label_up, color=color.green)