
This strategy is a quantitative trading system based on multi-period Simple Moving Average (SMA) crossover signals. It primarily identifies pullback opportunities within long-term uptrends. The strategy utilizes SMAs of five different periods (5, 10, 20, 60, and 120 days) to determine market trends and trading opportunities through their relative positions and crossover signals.
The core logic includes several key components: 1. Long-term trend identification through the relative position of SMA20 and SMA60, confirming an uptrend when SMA20 is above SMA60. 2. Buy signals are triggered when the short-term SMA5 crosses above SMA20 after a pullback, indicating a rebound within the uptrend. 3. Exit signals occur when SMA20 crosses above SMA5, suggesting weakening short-term momentum. 4. The strategy includes a time filter functionality to limit backtesting periods, enhancing flexibility.
The strategy builds a trading system focused on capturing pullback opportunities within long-term uptrends through the coordinated use of multiple-period SMAs. Its design is practical and straightforward, offering good comprehensibility and executability. The strategy’s robustness and reliability can be further enhanced through the introduction of volatility filtering, volume confirmation, and other optimization measures.
/*backtest
start: 2019-12-23 08:00:00
end: 2025-01-04 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("Long-Term Growing Stock Strategy", overlay=true)
// Date Range
// STEP 1. Create inputs that configure the backtest's date range
useDateFilter = input.bool(true, title="Filter Date Range of Backtest",group="Backtest Time Period")
backtestStartDate = input(timestamp("1 Jan 2014"),title="Start Date", group="Backtest Time Period",tooltip="This start date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " +"zone of the chart or of your computer.")
backtestEndDate = input(timestamp("31 Dec 2024"), title="End Date", group="Backtest Time Period")
// STEP 2. See if current bar falls inside the date range
inTradeWindow = true
// Calculate EMAs
// ema20 = ta.ema(close, ema20_length)
// ema60 = ta.ema(close, ema60_length)
// ema120 = ta.ema(close, ema120_length)
sma5 = ta.sma(close, 5)
sma10 = ta.sma(close, 10)
sma20 = ta.sma(close, 20)
sma60 = ta.sma(close, 60)
sma120 = ta.sma(close, 120)
// Long-term growth condition: EMA 20 > EMA 60 > EMA 120
longTermGrowth = sma20 > sma60
// and ema60 > ema120
// Entry condition: Stock closes below EMA 20 and then rises back above EMA 10
// entryCondition = ta.crossover(close, ema20) or (close[1] < ema20[1] and close > ema20)
entryCondition = sma5[1] <= sma20[1] and sma5 > sma20
// ta.crossover(sma5, sma20)
// Exit condition: EMA 20 drops below EMA 60
// exitCondition = ema5 < ema60 or (year == 2024 and month == 12 and dayofmonth == 30)
exitCondition = ta.crossover(sma20, sma5)
// Execute trades
if entryCondition and inTradeWindow
strategy.entry("Long Entry", strategy.long)
if exitCondition and inTradeWindow
strategy.close("Long Entry")
// plotchar(true, char="sma5: " + str.tostring(sma5))
// plotchar(true, char="sma5: " + sma20)
// label.new(x=bar_index, y=high + 10, text="SMA 5: " + str.tostring(sma5), color=color.blue, style=label.style_label_down, textcolor=color.white, size=size.small)
// label.new(x=bar_index, y=low, text="SMA 20: " + str.tostring(sma20), color=color.red, style=label.style_label_down, textcolor=color.white, size=size.small)
// x = time + (time - time[1]) * offset_x
// var label lab = na
// label.delete(lab)
// lab := label.new(x=x, y=0, text=txt, xloc=xloc.bar_time, yloc=yloc.belowbar, color=color.red, textcolor=color.black, size=size.normal, style=label.style_label_up)
// label.set_x(lab, x)
// Plot EMAs for visualization
// plot(ema20, color=color.red, title="EMA 20")
// plot(ema60, color=color.green, title="EMA 60")
// plot(ema120, color=color.blue, title="EMA 120")