
This strategy is a comprehensive trading system that combines K-Nearest Neighbors (KNN) machine learning algorithm, candlestick pattern recognition, and volume analysis. Through multi-dimensional analysis methods including moving average channels, volume threshold validation, and probability statistics, the strategy forms a three-dimensional analysis framework to capture potential trading opportunities.
The core logic of the strategy is built upon several key elements: 1. Using Simple Moving Average (SMA) and standard deviation to construct price channels for identifying overbought and oversold areas 2. Identifying nine classic candlestick patterns through programmatically defined conditions, including Hammer, Shooting Star, Engulfing patterns, etc. 3. Incorporating KNN algorithm to learn from historical price movements and predict future price directions 4. Using volume as a signal confirmation indicator, requiring volume to be above the set threshold when signals trigger 5. Calculating probability distributions for upward and downward movements as one of the signal filtering conditions
This strategy constructs a robust trading system by combining traditional technical analysis with modern machine learning methods. The strategy’s multi-dimensional analysis framework and strict signal confirmation mechanism provide reliable basis for trading decisions. Through continuous optimization and risk control, the strategy is expected to maintain stable performance under various market conditions.
/*backtest
start: 2024-01-17 00:00:00
end: 2025-01-16 00:00:00
period: 2d
basePeriod: 2d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}]
*/
//@version=6
strategy("Candle Pattern Analyzer with Volume", overlay=true)
// Input parameters
length = input.int(20, "Channel Length", minval=1)
mult = input.float(2.0, "Volatility Multiplier", minval=0.1)
candleLength = input.int(5, "Candle Length", minval=1)
k = input.int(5, "KNN Neighbors", minval=1)
volumeThreshold = input.int(100000, "Volume Threshold", minval=1)
// Calculate channel
basis = ta.sma(close, length)
dev = mult * ta.stdev(close, length)
upper = basis + dev
lower = basis - dev
// Plot channel
plot(basis, color=color.blue)
plot(upper, color=color.green)
plot(lower, color=color.red)
// Identify candle patterns
isBullish = close > open
isBearish = close < open
// Pre-calculate SMAs
smaLow = ta.sma(low, candleLength)
smaHigh = ta.sma(high, candleLength)
smaClose = ta.sma(close, candleLength)
// Hammer pattern
isHammer = isBullish and
low < smaLow and
close > smaClose and
(close - low) / (high - low) > 0.6 and
low < low[1]
// Shooting Star pattern
isShootingStar = isBearish and
high > smaHigh and
close < smaClose and
(high - close) / (high - low) > 0.6 and
high > high[1]
// Inverse Hammer pattern
isInverseHammer = isBullish and
high > smaHigh and
close < smaClose and
(high - close) / (high - low) > 0.6 and
high > high[1]
// Bullish Engulfing pattern
isBullishEngulfing = isBullish and
close > high[1] and
open < low[1]
// Bearish Engulfing pattern
isBearishEngulfing = isBearish and
close < low[1] and
open > high[1]
// Morning Star pattern
isMorningStar = isBullish and close[2] < open[2] and close[1] < open[1] and close > open[1]
// Evening Star pattern
isEveningStar = isBearish and close[2] > open[2] and close[1] > open[1] and close < open[1]
// Three Black Crows pattern
isThreeBlackCrows = isBearish and
close < close[1] and
close[1] < close[2] and
close[2] < close[3]
// Three White Soldiers pattern
isThreeWhiteSoldiers = isBullish and close > close[1] and close[1] > close[2] and close[2] > close[3]
// Compare previous candles
prevCandleUp = close[1] > open[1]
prevCandleDown = close[1] < open[1]
// Calculate probability
probUp = ta.sma(close > open ? 1 : 0, candleLength) / candleLength
probDown = ta.sma(close < open ? 1 : 0, candleLength) / candleLength
// Generate signals
buySignal = isHammer and prevCandleDown and probUp > probDown and volume > volumeThreshold
sellSignal = isShootingStar and prevCandleUp and probDown > probUp and volume > volumeThreshold
// Highlight patterns
color candleColor = na
if (isHammer)
candleColor := color.green
label.new(bar_index, high, "Hammer", color=color.green, style=label.style_label_up)
else if (isShootingStar)
candleColor := color.red
label.new(bar_index, low, "Shooting Star", color=color.red, style=label.style_label_down)
else if (isInverseHammer)
candleColor := color.blue
label.new(bar_index, high, "Inverse Hammer", color=color.blue, style=label.style_label_up)
else if (isBullishEngulfing)
candleColor := color.yellow
label.new(bar_index, high, "Bullish Engulfing", color=color.yellow, style=label.style_label_up)
else if (isBearishEngulfing)
candleColor := color.purple
label.new(bar_index, low, "Bearish Engulfing", color=color.purple, style=label.style_label_down)
else if (isMorningStar)
candleColor := color.orange
label.new(bar_index, high, "Morning Star", color=color.orange, style=label.style_label_up)
else if (isEveningStar)
candleColor := color.new(color.red, 80)
label.new(bar_index, low, "Evening Star", color=color.new(color.red, 80), style=label.style_label_down)
else if (isThreeBlackCrows)
candleColor := color.black
label.new(bar_index, low, "Three Black Crows", color=color.black, style=label.style_label_down)
else if (isThreeWhiteSoldiers)
candleColor := color.white
label.new(bar_index, high, "Three White Soldiers", color=color.white, style=label.style_label_up)
// Plot candles
barcolor(candleColor)
// KNN algorithm
var float[] knnData = array.new_float(k, na)
var float[] knnLabels = array.new_float(k, na) // Create an array to store KNN labels
array.set(knnLabels, 0, 1.0) // Label for "up" movement
// Shift KNN dataset to make room for new data point
for i = 1 to k-1
array.set(knnData, i, array.get(knnData, i-1))
array.set(knnLabels, i, array.get(knnLabels, i-1))
// Predict next movement using KNN algorithm
float prediction = 0.0
for i = 0 to k-1
float distance = math.abs(close - array.get(knnData, i))
prediction += array.get(knnLabels, i) / distance
prediction /= k
// Plot prediction
// line.new(bar_index, close, bar_index + 1, prediction, color=color.purple)
// Plot resistance and support lines
float resistance = ta.sma(high, length)
float support = ta.sma(low, length)
// line.new(bar_index, resistance, bar_index + 1, resistance, color=color.green, style=line.style_dashed)
// line.new(bar_index, support, bar_index + 1, support, color=color.red, style=line.style_dashed)
// Plot buy and sell signals with prices
if (buySignal)
// label.new(bar_index, low, "Buy at " + str.tostring(low), color=color.green, style=label.style_label_up)
strategy.entry("Buy", strategy.long, comment="Buy at " + str.tostring(low))
if (sellSignal)
// label.new(bar_index, high, "Sell at " + str.tostring(high), color=color.red, style=label.style_label_down)
strategy.entry("Sell", strategy.short, comment="Sell at " + str.tostring(high))
// Create alerts
alertcondition(buySignal, title="Buy Signal", message="Buy signal generated!")
alertcondition(sellSignal, title="Sell Signal", message="Sell signal generated!")