
This is a comprehensive quantitative trading strategy that integrates multi-timeframe analysis with technical indicator confirmation. The core of the strategy lies in evaluating market trend strength through moving average crossovers across different time periods (H1, H4, and daily), combined with momentum indicators such as RSI and MACD for trade signal confirmation. The system is equipped with a sophisticated money management mechanism, employing dynamic ATR-based stop-loss and take-profit levels, and implementing a compound exit strategy with partial profit-taking and trailing stops. This strategy is particularly suitable for forex and precious metals markets, designed to capture medium to long-term trending movements while effectively controlling risk.
The core principle of this strategy is multi-dimensional market trend analysis and confirmation:
Multi-Timeframe Trend Scoring System:
Entry Conditions:
Risk Management and Exit Strategy:
Control Panel:
Multi-dimensional Trend Confirmation: By integrating trend information from three timeframes, the strategy can more accurately identify strong trends, effectively filtering out false signals and noise. Higher weights are assigned to longer timeframes, aligning with the principle of long-term trend priority in technical analysis.
Multiple Entry Signal Validation: Besides trend scoring, the strategy requires specific conditions for price, RSI, and MACD indicators to be met simultaneously, significantly improving signal quality through this multi-confirmation mechanism.
Intelligent Risk Management:
Visual Decision Support: The control panel intuitively displays trend status across timeframes and the composite score, helping traders quickly assess market conditions and enhancing decision confidence.
High Adaptability: The strategy can be applied to various trading instruments, performing particularly well in forex pairs and precious metals with distinct trends.
Trend Reversal Risk: Despite enhanced accuracy through multi-timeframe analysis, the strategy may still face significant drawdowns during strong market reversals. Consider temporarily reducing position size or pausing trading before major economic data releases or events.
Overtrading Risk: When markets are range-bound, the trend score may frequently fluctuate around threshold values, causing repeated entries and exits. A solution is to add an additional range-market filter, such as ATR percentage or volatility indicators.
Parameter Sensitivity: Strategy performance is sensitive to SMA periods (50⁄200) and ATR multiplier settings. Comprehensive historical backtesting is recommended to optimize parameters, with periodic evaluation of whether they remain suitable for current market conditions.
Money Management Limitations: The current fixed proportion risk model may not be flexible enough in extreme market conditions. Consider introducing volatility-adjusted position sizing to automatically reduce positions during highly volatile periods.
Execution Delay Risk: In fast markets, the multiple confirmations required by the strategy may lead to delayed entries, missing optimal prices. To mitigate this risk, consider adding early entry signals based on price action.
Improved Trend Identification Mechanism:
Enhanced Signal Confirmation System:
Optimized Exit Mechanism:
Enhanced Risk Management:
Improved System Adaptability:
The Multi-Timeframe Trend Following and Momentum Confirmation Quantitative Trading Strategy is a comprehensive, systematic trading solution that generates high-quality trading signals by integrating trend information from multiple timeframes and technical indicator confirmations. Its greatest strength lies in the multi-layered trend identification and signal confirmation mechanisms, effectively improving signal quality; meanwhile, the dynamic risk management based on market volatility and stepped profit-taking strategy provide solid protection for capital safety.
The main risks of the strategy include potential drawdowns during trend reversal periods and parameter sensitivity. Through the suggested optimization directions, such as improving the trend identification mechanism, enhancing the signal confirmation system, optimizing the exit mechanism, strengthening risk management, and increasing system adaptability, this strategy can further improve its stability and profitability across various market environments.
For traders looking to capture medium to long-term trend opportunities in forex and precious metals markets, this is a theoretically sound and highly practical strategy framework. After thorough backtesting and appropriate parameter optimization, it can be used as a core component of systematic trading or as a standalone trading system.
/*backtest
start: 2025-02-20 00:00:00
end: 2025-02-27 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("JolurocePro v2.0", overlay=true, margin_long=100, margin_short=100, pyramiding=1)
// 1. Configuración Principal
capitalMaximo = input(20000, "Capital Maximo (USD)")
lotajeBase = input.float(0.1, "Lotes por 1000 USD", minval=0.01)
paresPermitidos = input.string("XAUUSD,EURUSD,GBPUSD,GBPNZD,EURCAD,USDCAD,USDJPY", "Pares Permitidos")
// 2. Indicadores Multitemporales
[mediaRapidaH1, mediaLentaH1] = request.security(syminfo.tickerid, "60", [ta.sma(close, 50), ta.sma(close, 200)])
[mediaRapidaH4, mediaLentaH4] = request.security(syminfo.tickerid, "240", [ta.sma(close, 50), ta.sma(close, 200)])
[mediaRapidaD, mediaLentaD] = request.security(syminfo.tickerid, "D", [ta.sma(close, 50), ta.sma(close, 200)])
// 3. Calculo del Score
currentScore = (mediaRapidaH1 > mediaLentaH1 ? 1 : -1) + (mediaRapidaH4 > mediaLentaH4 ? 2 : -2) + (mediaRapidaD > mediaLentaD ? 3 : -3)
// 4. Panel de Control
var table panel = table.new(position.top_right, 4, 6, bgcolor=color.new(#2C3E50, 90))
if barstate.islast
// Encabezado
table.cell(panel, 0, 0, " JolurocePro ", width=4, text_color=color.white, text_size=size.large)
// Temporalidad H1
table.cell(panel, 0, 1, "H1", text_color=color.white)
table.cell(panel, 1, 1, str.tostring(math.round(mediaRapidaH1, 4)), text_color=mediaRapidaH1 > mediaLentaH1 ? #2ECC71 : #E74C3C)
table.cell(panel, 2, 1, str.tostring(math.round(mediaLentaH1, 4)), text_color=mediaRapidaH1 > mediaLentaH1 ? #2ECC71 : #E74C3C)
table.cell(panel, 3, 1, mediaRapidaH1 > mediaLentaH1 ? "▲" : "▼", text_color=mediaRapidaH1 > mediaLentaH1 ? #2ECC71 : #E74C3C)
// Temporalidad H4
table.cell(panel, 0, 2, "H4", text_color=color.white)
table.cell(panel, 1, 2, str.tostring(math.round(mediaRapidaH4, 4)), text_color=mediaRapidaH4 > mediaLentaH4 ? #2ECC71 : #E74C3C)
table.cell(panel, 2, 2, str.tostring(math.round(mediaLentaH4, 4)), text_color=mediaRapidaH4 > mediaLentaH4 ? #2ECC71 : #E74C3C)
table.cell(panel, 3, 2, mediaRapidaH4 > mediaLentaH4 ? "▲" : "▼", text_color=mediaRapidaH4 > mediaLentaH4 ? #2ECC71 : #E74C3C)
// Temporalidad Diaria
table.cell(panel, 0, 3, "Diario", text_color=color.white)
table.cell(panel, 1, 3, str.tostring(math.round(mediaRapidaD, 4)), text_color=mediaRapidaD > mediaLentaD ? #2ECC71 : #E74C3C)
table.cell(panel, 2, 3, str.tostring(math.round(mediaLentaD, 4)), text_color=mediaRapidaD > mediaLentaD ? #2ECC71 : #E74C3C)
table.cell(panel, 3, 3, mediaRapidaD > mediaLentaD ? "▲" : "▼", text_color=mediaRapidaD > mediaLentaD ? #2ECC71 : #E74C3C)
// Recomendacion
table.cell(panel, 0, 4, "Score Actual:", text_color=color.white)
table.cell(panel, 1, 4, str.tostring(currentScore), text_color=currentScore >= 3 ? #2ECC71 : currentScore <= -3 ? #E74C3C : #F1C40F, width=3)
table.cell(panel, 0, 5, "Senal:", text_color=color.white)
table.cell(panel, 1, 5, currentScore >= 3 ? "COMPRA" : currentScore <= -3 ? "VENTA" : "NEUTRO", text_color=currentScore >= 3 ? #2ECC71 : currentScore <= -3 ? #E74C3C : #F1C40F, width=3)
// 5. Indicadores Tecnicos
atrValor = ta.atr(14)
rsi = ta.rsi(close, 14)
macdLine = ta.ema(close, 12) - ta.ema(close, 26)
macdSignal = ta.ema(macdLine, 9)
// 6. Condiciones de Entrada
condicionLong = currentScore >= 3 and close > mediaRapidaH1 and rsi > 50 and macdLine > macdSignal
condicionShort = currentScore <= -3 and close < mediaRapidaH1 and rsi < 50 and macdLine < macdSignal
// 7. Gestion de Riesgo
posicionSize = math.min((strategy.equity / 1000) * lotajeBase, strategy.equity * 0.02)
slLong = close - (atrValor * 2)
tp1Long = close + (atrValor * 1)
tp2Long = close + (atrValor * 3)
slShort = close + (atrValor * 2)
tp1Short = close - (atrValor * 1)
tp2Short = close - (atrValor * 3)
// 8. Ejecucion de Ordenes
if condicionLong
strategy.entry("Long", strategy.long, qty=posicionSize)
strategy.exit("TP1", "Long", stop=slLong, limit=tp1Long, qty_percent=50)
strategy.exit("TP2", "Long", limit=tp2Long, trail_points=atrValor*10)
if condicionShort
strategy.entry("Short", strategy.short, qty=posicionSize)
strategy.exit("TP1", "Short", stop=slShort, limit=tp1Short, qty_percent=50)
strategy.exit("TP2", "Short", limit=tp2Short, trail_points=atrValor*10)
// 9. Senales Visuales
plotshape(condicionLong, "Compra", shape.triangleup, location.belowbar, color=#2ECC71, size=size.small)
plotshape(condicionShort, "Venta", shape.triangledown, location.abovebar, color=#E74C3C, size=size.small)