
This is a comprehensive buy signal optimization strategy that identifies buying opportunities in the market by combining multiple technical analysis indicators and candlestick patterns. The core feature of this strategy is its high customizability, allowing traders to set the minimum number of conditions (selected from 9 predefined conditions) required to trigger a buy signal. This flexible design enables the strategy to adapt to different market environments and individual trading preferences while maintaining objectivity and systematic decision-making.
The strategy is based on a multi-dimensional technical analysis framework, comprehensively evaluating the following 9 key conditions:
The strategy works by counting the number of satisfied conditions, triggering a buy signal when the count meets or exceeds the user-defined minimum threshold. The default setting requires at least 2 conditions to be met, but users can adjust this threshold according to their risk preference and market environment.
This strategy offers several significant advantages:
Despite its rational design, the strategy has the following potential risks:
To mitigate these risks, traders are advised to: (1) adjust the minimum condition count based on different market cycles; (2) add appropriate stop-loss and profit-taking strategies; (3) test strategy performance in various market environments; (4) consider adding filter conditions to reduce false signals.
Based on in-depth analysis of the code, here are potential optimization directions for this strategy:
These optimization measures can significantly improve the strategy’s robustness and adaptability, especially during transitions between different market environments.
The “Multi-Dimensional Technical Indicator Cross-Confirmation Buy Signal Optimization Strategy” is a comprehensive and flexible trading system that identifies potential buying opportunities through integrated analysis of multiple technical indicators and price patterns. Its core strengths lie in customizability and multi-dimensional confirmation mechanisms, allowing traders to adjust strategy sensitivity according to personal risk preferences and market conditions.
Although the strategy has some inherent risks, such as parameter sensitivity and lack of a refined exit mechanism, these issues can be effectively addressed through the suggested optimization directions, particularly by adding dynamic weighting systems and improving exit logic. Overall, this is a well-structured, logically clear buy signal generation framework suitable for both experienced traders seeking advanced customization and beginners looking for objective market entry signals through simple parameter adjustments.
The true value of this strategy lies not only in its buy signal generation capability but also in providing an extensible framework that traders can continually iterate and improve upon to develop a complete trading system that better aligns with their personal trading style.
/*backtest
start: 2024-08-10 00:00:00
end: 2024-12-10 00:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("My Buy Signal Strategy", overlay=true)
min_conditions = input.int(2, "Minimum Conditions", minval=1, maxval=9)
// Condition 1: 50-day MA crosses above 200-day MA
ma50 = ta.sma(close, 50)
ma200 = ta.sma(close, 200)
condition1 = ta.crossover(ma50, ma200)
// Condition 2: RSI < 40 and rising
rsi_value = ta.rsi(close, 14)
condition2 = rsi_value < 40 and rsi_value > rsi_value[1]
// Condition 3: MACD line crosses above signal line
[macd_line, signal_line, hist] = ta.macd(close, 12, 26, 9)
condition3 = ta.crossover(macd_line, signal_line)
// Condition 5: Stochastic %K crosses above %D from below 30
stoch_length = 14
smooth_k = 3
smooth_d = 3
stoch_raw = ta.stoch(high, low, close, stoch_length)
k = ta.sma(stoch_raw, smooth_k)
d = ta.sma(k, smooth_d)
condition5 = ta.crossover(k, d) and k[1] < 30
// Condition 6: Price at Fibonacci retracement levels and showing reversal signs
swing_low = ta.lowest(low, 260)
swing_high = ta.highest(high, 260)
fib382 = swing_high - 0.382 * (swing_high - swing_low)
fib50 = swing_high - 0.5 * (swing_high - swing_low)
fib618 = swing_high - 0.618 * (swing_high - swing_low)
close_within_fib382 = close >= fib382 - 0.01 * close and close <= fib382 + 0.01 * close
close_within_fib50 = close >= fib50 - 0.01 * close and close <= fib50 + 0.01 * close
close_within_fib618 = close >= fib618 - 0.01 * close and close <= fib618 + 0.01 * close
condition6 = (close_within_fib382 or close_within_fib50 or close_within_fib618) and close > open
// Condition 7: Parabolic SAR dots are below the price bars
psar = ta.sar(0.02, 0.02, 0.2)
condition7 = psar < close
// Condition 8: ADX > 15 and rising, with +DI > -DI
[di_plus, di_minus, _] = ta.dmi(14, 14)
dx = 100 * math.abs(di_plus - di_minus) / (di_plus + di_minus)
adx_val = ta.rma(dx, 14)
condition8 = adx_val > 15 and adx_val > adx_val[1] and di_plus > di_minus
// Condition 9: Volume increases during price rises
avg_volume = ta.sma(volume, 20)
condition9 = close > open and volume > avg_volume
// Condition 10: Price forms bull reversal patterns (Hammer, Inverted Hammer, Morning Star)
isHammer = close > open and (high - close) <= (close - open) and (open - low) >= 1.5 * (close - open)
isInvertedHammer = close > open and (high - close) >= 1.5 * (close - open) and (open - low) <= (close - open)
isMorningStar = close[2] < open[2] and math.abs(close[1] - open[1]) < (open[2] - close[2]) * 0.75 and close > open and close > close[1] and open[1] < close[2]
condition10 = isHammer or isInvertedHammer or isMorningStar
// Count the number of conditions met
count = (condition1 ? 1 : 0) + (condition2 ? 1 : 0) + (condition3 ? 1 : 0) + (condition5 ? 1 : 0) + (condition6 ? 1 : 0) + (condition7 ? 1 : 0) + (condition8 ? 1 : 0) + (condition9 ? 1 : 0) + (condition10 ? 1 : 0)
// Buy signal if count >= min_conditions
buy_signal = count >= min_conditions
if (buy_signal)
strategy.entry("Buy", strategy.long)