
The Dual Moving Average Crossover Trend-Following Strategy is a quantitative trading system that combines technical analysis with comprehensive risk management. The core of this strategy utilizes the crossover signals between a Fast Simple Moving Average (Fast SMA) and a Slow Simple Moving Average (Slow SMA) to identify market trend changes, while implementing multiple risk control mechanisms to ensure capital preservation. The strategy is implemented on the Pine Script platform and is applicable to trend-following trading across various instruments.
This strategy bases trading decisions on the interaction between two simple moving averages:
Signal Generation Mechanism:
Execution Timing Control: All trading decisions are executed at the close of the candle, avoiding look-ahead bias and ensuring the reliability and authenticity of backtest results.
Money Management System:
Multi-Level Risk Control:
This strategy captures trends through moving average crossovers and employs comprehensive risk management measures to ensure trading safety and sustainability.
Robust Trend Identification Mechanism:
Precise Money Management:
Multi-Level Risk Protection:
Trade Execution Timing Control:
process_orders_on_close=true parameter to ensure order processing complies with real trading environmentsAdaptive Trailing Stop Loss System:
Trend Identification Lag:
Fixed Parameter Adaptability Issues:
Trailing Stop Loss Activation Timing:
Money Management Risks:
Technical Implementation Limitations:
Signal Generation Mechanism Optimization:
Risk Management System Enhancement:
Entry Optimization:
Backtesting and Evaluation Framework:
Technical Implementation Improvements:
The Dual Moving Average Crossover Trend-Following Strategy is a complete trading system that combines classic technical analysis methods with modern risk management concepts. Its core strengths lie in its clear trend identification mechanism and multi-level risk control system, particularly its refined money management and advanced trailing stop loss mechanism, which provide the strategy with good risk-adjusted return potential.
However, the strategy also faces challenges such as the inherent lag of moving averages and parameter adaptability issues. By introducing adaptive parameters, enhancing signal filtering mechanisms, and improving the risk management system, strategy performance can be further enhanced.
Overall, this is a well-structured, logically clear quantitative strategy framework suitable as a foundation for medium to long-term trend-following systems, particularly applicable to markets with distinct trend characteristics. For traders, understanding and mastering its risk management philosophy is more important than simply copying strategy parameters, which is the most valuable aspect of this strategy.
/*backtest
start: 2025-06-04 00:00:00
end: 2025-06-11 00:00:00
period: 5m
basePeriod: 5m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy(title="Dual SMA Crossover Strategy", overlay=true, calc_on_every_tick=false, process_orders_on_close=true)
// --- Inputs ---
// SMA Lengths
fast_length = input.int(24, title="Fast SMA Length", minval=1)
slow_length = input.int(48, title="Slow SMA Length", minval=1)
// Risk Management
risk_per_trade_percent = input.float(2.0, title="Risk Per Trade (%)", minval=0.1, maxval=10.0, step=0.1) // % of equity to risk per trade
stop_loss_percent = input.float(0.8, title="Stop Loss (%)", minval=0.1, step=0.1) // % from entry price
risk_reward_ratio = input.float(2.0, title="Risk-Reward Ratio", minval=0.5, step=0.1) // 2.0 = 2R, 3.0 = 3R etc.
// Advanced Trailing Stop Loss
trailing_start_percent = input.float(1.0, title="Trailing Stop Start (%)", minval=0.1, step=0.1) // % profit to activate TSL
trailing_stop_percent = input.float(0.5, title="Trailing Stop Trail (%)", minval=0.1, step=0.1) // % to trail by once activated
// --- Calculations ---
// Calculate SMAs
fast_sma = ta.sma(close, fast_length)
slow_sma = ta.sma(close, slow_length)
// Plot SMAs on chart
plot(fast_sma, color=color.blue, title="Fast SMA")
plot(slow_sma, color=color.red, title="Slow SMA")
// Crossover conditions (calculated on previous bar to prevent look-ahead bias)
long_condition = ta.crossover(fast_sma[1], slow_sma[1])
short_condition = ta.crossunder(fast_sma[1], slow_sma[1])
// --- Money Management and Position Sizing ---
// Calculate account equity and risk amount
account_equity = strategy.initial_capital + strategy.netprofit
risk_amount = account_equity * (risk_per_trade_percent / 100)
// Calculate Stop Loss price based on entry and SL percentage
var float long_stop_price = na
var float short_stop_price = na
var float long_take_profit_price = na
var float short_take_profit_price = na
// --- Trailing Stop Loss Variables ---
var float trailing_long_activated_price = na // Price at which TSL is activated for long
var float trailing_short_activated_price = na // Price at which TSL is activated for short
var float current_trailing_stop_long = na
var float current_trailing_stop_short = na
var bool is_long_trailing_active = false
var bool is_short_trailing_active = false
// --- Strategy Entry and Exit Orders ---
if long_condition
// Reset TSL variables for a new entry
trailing_long_activated_price := na
current_trailing_stop_long := na
is_long_trailing_active := false
// Calculate SL, TP for long entry
long_stop_price := close * (1 - stop_loss_percent / 100) // SL below entry
long_take_profit_price := close * (1 + (stop_loss_percent * risk_reward_ratio) / 100) // TP above entry based on RRR
// Calculate position size for long entry
price_change_per_unit = close * (stop_loss_percent / 100)
if price_change_per_unit > 0
long_quantity = risk_amount / price_change_per_unit
strategy.entry("Long", strategy.long, qty=long_quantity, comment="Buy Signal")
else
strategy.entry("Long", strategy.long, comment="Buy Signal (Risk calculation skipped)") // Fallback if SL is 0 or negative
if short_condition
// Reset TSL variables for a new entry
trailing_short_activated_price := na
current_trailing_stop_short := na
is_short_trailing_active := false
// Calculate SL, TP for short entry
short_stop_price := close * (1 + stop_loss_percent / 100) // SL above entry
short_take_profit_price := close * (1 - (stop_loss_percent * risk_reward_ratio) / 100) // TP below entry based on RRR
// Calculate position size for short entry
price_change_per_unit = close * (stop_loss_percent / 100)
if price_change_per_unit > 0
short_quantity = risk_amount / price_change_per_unit
strategy.entry("Short", strategy.short, qty=short_quantity, comment="Sell Signal")
else
strategy.entry("Short", strategy.short, comment="Sell Signal (Risk calculation skipped)") // Fallback if SL is 0 or negative
// --- Stop Loss, Take Profit, Trailing Stop Logic ---
// Long position management
if strategy.position_size > 0 // We are in a long position
entry_price = strategy.opentrades.entry_price(0)
current_profit_percent = ((close - entry_price) / entry_price) * 100
// Initial SL and TP set at entry
strategy.exit("Exit Long", from_entry="Long", stop=long_stop_price, limit=long_take_profit_price, comment="TP/SL Long")
// Check for Trailing Stop activation
if not is_long_trailing_active and current_profit_percent >= trailing_start_percent
is_long_trailing_active := true
// Set initial trailing stop when activated
trailing_long_activated_price := high // Or close, depending on preference
current_trailing_stop_long := high * (1 - trailing_stop_percent / 100)
// If trailing stop is active, update it
if is_long_trailing_active
// Only move the trailing stop up (for long positions)
potential_new_stop = high * (1 - trailing_stop_percent / 100)
current_trailing_stop_long := math.max(current_trailing_stop_long, potential_new_stop)
// Ensure trailing stop is not below the initial long_stop_price
// This prevents the trailing stop from being less protective than the initial SL if the price drops after activation.
current_trailing_stop_long := math.max(current_trailing_stop_long, long_stop_price)
strategy.exit("Trailing Exit Long", from_entry="Long", stop=current_trailing_stop_long, comment="Trailing SL Long")
// Short position management
if strategy.position_size < 0 // We are in a short position
entry_price = strategy.opentrades.entry_price(0)
current_profit_percent = ((entry_price - close) / entry_price) * 100
// Initial SL and TP set at entry
strategy.exit("Exit Short", from_entry="Short", stop=short_stop_price, limit=short_take_profit_price, comment="TP/SL Short")
// Check for Trailing Stop activation
if not is_short_trailing_active and current_profit_percent >= trailing_start_percent
is_short_trailing_active := true
// Set initial trailing stop when activated
trailing_short_activated_price := low // Or close, depending on preference
current_trailing_stop_short := low * (1 + trailing_stop_percent / 100)
// If trailing stop is active, update it
if is_short_trailing_active
// Only move the trailing stop down (for short positions)
potential_new_stop = low * (1 + trailing_stop_percent / 100)
current_trailing_stop_short := math.min(current_trailing_stop_short, potential_new_stop)
// Ensure trailing stop is not above the initial short_stop_price
current_trailing_stop_short := math.min(current_trailing_stop_short, short_stop_price)
strategy.exit("Trailing Exit Short", from_entry="Short", stop=current_trailing_stop_short, comment="Trailing SL Short")
// Plot background color to indicate active position (optional)
bgcolor(strategy.position_size > 0 ? color.new(color.green, 90) : na, title="Long Position Background")
bgcolor(strategy.position_size < 0 ? color.new(color.red, 90) : na, title="Short Position Background")