Estrategia de red neuronal de doble eje temporal


Fecha de creación: 2023-09-14 16:10:26 Última modificación: 2023-09-14 16:10:26
Copiar: 0 Número de Visitas: 735
1
Seguir
1617
Seguidores

Principio de estrategia

La estrategia utiliza modelos de predicción de redes neuronales para determinar tendencias de precios en dos intervalos de tiempo y realizar operaciones en el momento de la sincronización de las señales de los dos ejes temporales.

La lógica es la siguiente:

  1. Obtención de dos tipos de movimientos de precios en la línea de tiempo, como la línea diaria y la línea de 1 hora

  2. Entrenamiento de los cambios de precio en la red neuronal para obtener una salida predictiva de cada eje

  3. Cuando los dos ejes predicen la salida en la misma dirección, es decir, sobrepasan el umbral, se produce una señal de transacción

  4. El pronóstico de la línea del día hace más horas, el pronóstico de la hora hace más horas, hace más transacciones

  5. Cuando el pronóstico de línea de día está vacío, el pronóstico de una hora está vacío, el pronóstico está vacío.

  6. Cuando las predicciones de los dos ejes no coinciden, la posición se iguala.

La estrategia aprovecha la información de doble eje de tiempo para determinar la dirección de la tendencia en varias dimensiones y luego realizar operaciones, lo que reduce efectivamente las señales falsas.

Ventajas estratégicas

  • Pronóstico de doble eje de tiempo para una mayor precisión de juicio

  • Las redes neuronales modelan datos complejos

  • Negociaciones directas para evitar la estafa

Riesgo estratégico

  • Se requieren grandes cantidades de datos para el entrenamiento de la red

  • El diseño de la estructura de la red requiere pruebas repetitivas

  • La frecuencia de las señales de combinación de dos ejes es baja

Resumir

La estrategia utiliza una red neuronal para juzgar las tendencias de precios desde dos ejes temporales y realizar transacciones con la premisa de garantizar la precisión de la determinación. Sin embargo, requiere la optimización de los parámetros de la red y la configuración de una frecuencia de transacción razonable. En general, ofrece una guía de dirección de negociación más sólida.

Código Fuente de la Estrategia
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 3h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=2
strategy("ANN 2 signals", overlay=false, precision=4, calc_on_every_tick=true)

threshold = input(title="Threshold", type=float, defval=0.006, step=0.001)
largeTimeframe = input(title="Large timeframe",  defval='D')
smallTimeframe = input(title="Small timeframe",  defval='60')

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) => 
    (exp(v) - exp(-v))/(exp(v) + exp(-v))

ANN(input) =>
    l0_0 = PineActivationFunctionLinear(input)
    l0_1 = PineActivationFunctionLinear(input)
    l0_2 = PineActivationFunctionLinear(input)
    l0_3 = PineActivationFunctionLinear(input)
    l0_4 = PineActivationFunctionLinear(input)
    l0_5 = PineActivationFunctionLinear(input)
    l0_6 = PineActivationFunctionLinear(input)
    l0_7 = PineActivationFunctionLinear(input)
    l0_8 = PineActivationFunctionLinear(input)
    l0_9 = PineActivationFunctionLinear(input)
    l0_10 = PineActivationFunctionLinear(input)
    l0_11 = PineActivationFunctionLinear(input)
    l0_12 = PineActivationFunctionLinear(input)
    l0_13 = PineActivationFunctionLinear(input)
    l0_14 = PineActivationFunctionLinear(input)
 
    l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
    l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
    l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
    l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
    l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
    l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
    l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487 + l0_9*1.1994484991 + l0_10*-0.9879081404 + l0_11*-0.3564970612 + l0_12*1.5814717823 + l0_13*-0.9614804676 + l0_14*0.9204822346)
    l1_7 = PineActivationFunctionTanh(l0_0*-4.2700957175 + l0_1*9.4328591157 + l0_2*-4.3045548 + l0_3*5.0616868842 + l0_4*3.3388781058 + l0_5*-2.1885073225 + l0_6*-6.506301518 + l0_7*3.8429000108 + l0_8*-1.6872237349 + l0_9*2.4107095799 + l0_10*-3.0873985314 + l0_11*-2.8358325447 + l0_12*2.4044366491 + l0_13*0.636779082 + l0_14*-13.2173215035)
    l1_8 = PineActivationFunctionTanh(l0_0*-8.3224697492 + l0_1*-9.4825530183 + l0_2*3.5294389835 + l0_3*0.1538618049 + l0_4*-13.5388631898 + l0_5*-0.1187936017 + l0_6*-8.4582741139 + l0_7*5.1566299292 + l0_8*10.345519938 + l0_9*2.9211759333 + l0_10*-5.0471804233 + l0_11*4.9255989983 + l0_12*-9.9626142544 + l0_13*23.0043143258 + l0_14*20.9391809343)
    l1_9 = PineActivationFunctionTanh(l0_0*-0.9120518654 + l0_1*0.4991807488 + l0_2*-1.877244586 + l0_3*3.1416466525 + l0_4*1.063709676 + l0_5*0.5210126835 + l0_6*-4.9755780108 + l0_7*2.0336532347 + l0_8*-1.1793121093 + l0_9*-0.730664855 + l0_10*-2.3515987428 + l0_11*-0.1916546514 + l0_12*-2.2530340504 + l0_13*-0.2331829119 + l0_14*0.7216218149)
    l1_10 = PineActivationFunctionTanh(l0_0*-5.2139618683 + l0_1*1.0663790028 + l0_2*1.8340834959 + l0_3*1.6248173447 + l0_4*-0.7663740145 + l0_5*0.1062788171 + l0_6*2.5288021501 + l0_7*-3.4066549066 + l0_8*-4.9497988755 + l0_9*-2.3060668143 + l0_10*-1.3962486274 + l0_11*0.6185583427 + l0_12*0.2625299576 + l0_13*2.0270246444 + l0_14*0.6372015811)
    l1_11 = PineActivationFunctionTanh(l0_0*0.2020072665 + l0_1*0.3885852709 + l0_2*-0.1830248843 + l0_3*-1.2408598444 + l0_4*-0.6365798088 + l0_5*1.8736534268 + l0_6*0.656206442 + l0_7*-0.2987482678 + l0_8*-0.2017485963 + l0_9*-1.0604095303 + l0_10*0.239793356 + l0_11*-0.3614172938 + l0_12*0.2614678044 + l0_13*1.0083551762 + l0_14*-0.5473833797)
    l1_12 = PineActivationFunctionTanh(l0_0*-0.4367517149 + l0_1*-10.0601304934 + l0_2*1.9240604838 + l0_3*-1.3192184047 + l0_4*-0.4564760159 + l0_5*-0.2965270368 + l0_6*-1.1407423613 + l0_7*2.0949647291 + l0_8*-5.8212599297 + l0_9*-1.3393321939 + l0_10*7.6624548265 + l0_11*1.1309391851 + l0_12*-0.141798054 + l0_13*5.1416736187 + l0_14*-1.8142503125)
    l1_13 = PineActivationFunctionTanh(l0_0*1.103948336 + l0_1*-1.4592033032 + l0_2*0.6146278432 + l0_3*0.5040966421 + l0_4*-2.4276090772 + l0_5*-0.0432902426 + l0_6*-0.0044259999 + l0_7*-0.5961347308 + l0_8*0.3821026107 + l0_9*0.6169102373 +l0_10*-0.1469847611 + l0_11*-0.0717167683 + l0_12*-0.0352403695 + l0_13*1.2481310788 + l0_14*0.1339628411)
    l1_14 = PineActivationFunctionTanh(l0_0*-9.8049980534 + l0_1*13.5481068519 + l0_2*-17.1362809025 + l0_3*0.7142100864 + l0_4*4.4759163422 + l0_5*4.5716161777 + l0_6*1.4290884628 + l0_7*8.3952862712 + l0_8*-7.1613700432 + l0_9*-3.3249489518+ l0_10*-0.7789587912 + l0_11*-1.7987628873 + l0_12*13.364752545 + l0_13*5.3947219678 + l0_14*12.5267547127)
    l1_15 = PineActivationFunctionTanh(l0_0*0.9869461803 + l0_1*1.9473351905 + l0_2*2.032925759 + l0_3*7.4092080633 + l0_4*-1.9257741399 + l0_5*1.8153585328 + l0_6*1.1427866392 + l0_7*-0.3723167449 + l0_8*5.0009927384 + l0_9*-0.2275103411 + l0_10*2.8823012914 + l0_11*-3.0633141934 + l0_12*-2.785334815 + l0_13*2.727981E-4 + l0_14*-0.1253009512)
    l1_16 = PineActivationFunctionTanh(l0_0*4.9418118585 + l0_1*-2.7538199876 + l0_2*-16.9887588104 + l0_3*8.8734475297 + l0_4*-16.3022734814 + l0_5*-4.562496601 + l0_6*-1.2944373699 + l0_7*-9.6022946986 + l0_8*-1.018393866 + l0_9*-11.4094515429 + l0_10*24.8483091382 + l0_11*-3.0031522277 + l0_12*0.1513114555 + l0_13*-6.7170487021 + l0_14*-14.7759227576)
    l1_17 = PineActivationFunctionTanh(l0_0*5.5931454656 + l0_1*2.22272078 + l0_2*2.603416897 + l0_3*1.2661196599 + l0_4*-2.842826446 + l0_5*-7.9386099121 + l0_6*2.8278849111 + l0_7*-1.2289445238 + l0_8*4.571484248 + l0_9*0.9447425595 + l0_10*4.2890688351 + l0_11*-3.3228258483 + l0_12*4.8866215526 + l0_13*1.0693412194 + l0_14*-1.963203112)
    l1_18 = PineActivationFunctionTanh(l0_0*0.2705520264 + l0_1*0.4002328199 + l0_2*0.1592515845 + l0_3*0.371893552 + l0_4*-1.6639467871 + l0_5*2.2887318884 + l0_6*-0.148633664 + l0_7*-0.6517792263 + l0_8*-0.0993032992 + l0_9*-0.964940376 + l0_10*0.1286342935 + l0_11*0.4869943595 + l0_12*1.4498648166 + l0_13*-0.3257333384 + l0_14*-1.3496419812)
    l1_19 = PineActivationFunctionTanh(l0_0*-1.3223200798 + l0_1*-2.2505204324 + l0_2*0.8142804525 + l0_3*-0.848348177 + l0_4*0.7208860589 + l0_5*1.2033423756 + l0_6*-0.1403005786 + l0_7*0.2995941644 + l0_8*-1.1440473062 + l0_9*1.067752916 + l0_10*-1.2990534679 + l0_11*1.2588583869 + l0_12*0.7670409455 + l0_13*2.7895972983 + l0_14*-0.5376152512)
    l1_20 = PineActivationFunctionTanh(l0_0*0.7382351572 + l0_1*-0.8778865631 + l0_2*1.0950766363 + l0_3*0.7312146997 + l0_4*2.844781386 + l0_5*2.4526730903 + l0_6*-1.9175165077 + l0_7*-0.7443755288 + l0_8*-3.1591419438 + l0_9*0.8441602697 + l0_10*1.1979484448 + l0_11*2.138098544 + l0_12*0.9274159536 + l0_13*-2.1573448803 + l0_14*-3.7698356464)
    l1_21 = PineActivationFunctionTanh(l0_0*5.187120117 + l0_1*-7.7525670576 + l0_2*1.9008346975 + l0_3*-1.2031603996 + l0_4*5.917669142 + l0_5*-3.1878682719 + l0_6*1.0311747828 + l0_7*-2.7529484612 + l0_8*-1.1165884578 + l0_9*2.5524942323 + l0_10*-0.38623241 + l0_11*3.7961317445 + l0_12*-6.128820883 + l0_13*-2.1470707709 + l0_14*2.0173792965)
    l1_22 = PineActivationFunctionTanh(l0_0*-6.0241676562 + l0_1*0.7474455584 + l0_2*1.7435724844 + l0_3*0.8619835076 + l0_4*-0.1138406797 + l0_5*6.5979359352 + l0_6*1.6554154348 + l0_7*-3.7969458806 + l0_8*1.1139097376 + l0_9*-1.9588417 + l0_10*3.5123392221 + l0_11*9.4443103128 + l0_12*-7.4779291395 + l0_13*3.6975940671 + l0_14*8.5134262747)
    l1_23 = PineActivationFunctionTanh(l0_0*-7.5486576471 + l0_1*-0.0281420865 + l0_2*-3.8586839454 + l0_3*-0.5648792233 + l0_4*-7.3927282026 + l0_5*-0.3857538046 + l0_6*-2.9779885698 + l0_7*4.0482279965 + l0_8*-1.1522499578 + l0_9*-4.1562500212 + l0_10*0.7813134307 + l0_11*-1.7582667612 + l0_12*1.7071109988 + l0_13*6.9270873208 + l0_14*-4.5871357362)
    l1_24 = PineActivationFunctionTanh(l0_0*-5.3603442228 + l0_1*-9.5350611629 + l0_2*1.6749984422 + l0_3*-0.6511065892 + l0_4*-0.8424823239 + l0_5*1.9946675213 + l0_6*-1.1264361638 + l0_7*0.3228676616 + l0_8*5.3562230396 + l0_9*-1.6678168952+ l0_10*1.2612580068 + l0_11*-3.5362671399 + l0_12*-9.3895191366 + l0_13*2.0169228673 + l0_14*-3.3813191557)
    l1_25 = PineActivationFunctionTanh(l0_0*1.1362866429 + l0_1*-1.8960071702 + l0_2*5.7047307243 + l0_3*-1.6049785053 + l0_4*-4.8353898931 + l0_5*-1.4865381145 + l0_6*-0.2846893475 + l0_7*2.2322095997 + l0_8*2.0930488668 + l0_9*1.7141411002 + l0_10*-3.4106032176 + l0_11*3.0593289612 + l0_12*-5.0894813904 + l0_13*-0.5316299133 + l0_14*0.4705265416)
    l1_26 = PineActivationFunctionTanh(l0_0*-0.9401400975 + l0_1*-0.9136086957 + l0_2*-3.3808688582 + l0_3*4.7200776773 + l0_4*3.686296919 + l0_5*14.2133723935 + l0_6*1.5652940954 + l0_7*-0.2921139433 + l0_8*1.0244504511 + l0_9*-7.6918299134 + l0_10*-0.594936135 + l0_11*-1.4559914156 + l0_12*2.8056435224 + l0_13*2.6103905733 + l0_14*2.3412348872)
    l1_27 = PineActivationFunctionTanh(l0_0*1.1573980186 + l0_1*2.9593661909 + l0_2*0.4512594325 + l0_3*-0.9357210858 + l0_4*-1.2445804495 + l0_5*4.2716471631 + l0_6*1.5167912375 + l0_7*1.5026853293 + l0_8*1.3574772038 + l0_9*-1.9754386842 + l0_10*6.727671436 + l0_11*8.0145772889 + l0_12*7.3108970663 + l0_13*-2.5005627841 + l0_14*8.9604502277)
    l1_28 = PineActivationFunctionTanh(l0_0*6.3576350212 + l0_1*-2.9731672725 + l0_2*-2.7763558082 + l0_3*-3.7902984555 + l0_4*-1.0065574585 + l0_5*-0.7011836061 + l0_6*-1.0298068578 + l0_7*1.201007784 + l0_8*-0.7835862254 + l0_9*-3.9863597435 + l0_10*6.7851825502 + l0_11*1.1120256721 + l0_12*-2.263287351 + l0_13*1.8314374104 + l0_14*-2.279102097)
    l1_29 = PineActivationFunctionTanh(l0_0*-7.8741911036 + l0_1*-5.3370618518 + l0_2*11.9153868964 + l0_3*-4.1237170553 + l0_4*2.9491152758 + l0_5*1.0317132502 + l0_6*2.2992199883 + l0_7*-2.0250502364 + l0_8*-11.0785995839 + l0_9*-6.3615588554 + l0_10*-1.1687644976 + l0_11*6.3323478015 + l0_12*6.0195076962 + l0_13*-2.8972208702 + l0_14*3.6107747183)
 
    l2_0 = PineActivationFunctionTanh(l1_0*-0.590546797 + l1_1*0.6608304658 + l1_2*-0.3358268839 + l1_3*-0.748530283 + l1_4*-0.333460383 + l1_5*-0.3409307681 + l1_6*0.1916558198 + l1_7*-0.1200399453 + l1_8*-0.5166151854 + l1_9*-0.8537164676 +l1_10*-0.0214448647 + l1_11*-0.553290271 + l1_12*-1.2333302892 + l1_13*-0.8321813811 + l1_14*-0.4527761741 + l1_15*0.9012545631 + l1_16*0.415853215 + l1_17*0.1270548319 + l1_18*0.2000460279 + l1_19*-0.1741942671 + l1_20*0.419830522 + l1_21*-0.059839291 + l1_22*-0.3383001769 + l1_23*0.1617814073 + l1_24*0.3071848006 + l1_25*-0.3191182045 + l1_26*-0.4981831822 + l1_27*-1.467478375 + l1_28*-0.1676432563 + l1_29*1.2574849126)
    l2_1 = PineActivationFunctionTanh(l1_0*-0.5514235841 + l1_1*0.4759190049 + l1_2*0.2103576983 + l1_3*-0.4754377924 + l1_4*-0.2362941295 + l1_5*0.1155082119 + l1_6*0.7424215794 + l1_7*-0.3674198672 + l1_8*0.8401574461 + l1_9*0.6096563193 + l1_10*0.7437935674 + l1_11*-0.4898638101 + l1_12*-0.4168668092 + l1_13*-0.0365111095 + l1_14*-0.342675224 + l1_15*0.1870268765 + l1_16*-0.5843050987 + l1_17*-0.4596547471 + l1_18*0.452188522 + l1_19*-0.6737126684 + l1_20*0.6876072741 + l1_21*-0.8067776704 + l1_22*0.7592979467 + l1_23*-0.0768239468 + l1_24*0.370536097 + l1_25*-0.4363884671 + l1_26*-0.419285676 + l1_27*0.4380251141 + l1_28*0.0822528948 + l1_29*-0.2333910809)
    l2_2 = PineActivationFunctionTanh(l1_0*-0.3306539521 + l1_1*-0.9382247194 + l1_2*0.0746711276 + l1_3*-0.3383838985 + l1_4*-0.0683232217 + l1_5*-0.2112358049 + l1_6*-0.9079234054 + l1_7*0.4898595603 + l1_8*-0.2039825863 + l1_9*1.0870698641+ l1_10*-1.1752901237 + l1_11*1.1406403923 + l1_12*-0.6779626786 + l1_13*0.4281048906 + l1_14*-0.6327670055 + l1_15*-0.1477678844 + l1_16*0.2693637584 + l1_17*0.7250738509 + l1_18*0.7905904504 + l1_19*-1.6417250883 + l1_20*-0.2108095534 +l1_21*-0.2698557472 + l1_22*-0.2433656685 + l1_23*-0.6289943273 + l1_24*0.436428207 + l1_25*-0.8243825184 + l1_26*-0.8583496686 + l1_27*0.0983131026 + l1_28*-0.4107462518 + l1_29*0.5641683087)
    l2_3 = PineActivationFunctionTanh(l1_0*1.7036869992 + l1_1*-0.6683507666 + l1_2*0.2589197112 + l1_3*0.032841148 + l1_4*-0.4454796342 + l1_5*-0.6196149423 + l1_6*-0.1073622976 + l1_7*-0.1926393101 + l1_8*1.5280232458 + l1_9*-0.6136527036 +l1_10*-1.2722934357 + l1_11*0.2888655811 + l1_12*-1.4338638512 + l1_13*-1.1903556863 + l1_14*-1.7659663905 + l1_15*0.3703086867 + l1_16*1.0409140889 + l1_17*0.0167382209 + l1_18*0.6045646461 + l1_19*4.2388788116 + l1_20*1.4399738234 + l1_21*0.3308571935 + l1_22*1.4501137667 + l1_23*0.0426123724 + l1_24*-0.708479795 + l1_25*-1.2100800732 + l1_26*-0.5536278651 + l1_27*1.3547250573 + l1_28*1.2906250286 + l1_29*0.0596007114)
    l2_4 = PineActivationFunctionTanh(l1_0*-0.462165126 + l1_1*-1.0996742176 + l1_2*1.0928262999 + l1_3*1.806407067 + l1_4*0.9289147669 + l1_5*0.8069022793 + l1_6*0.2374237802 + l1_7*-2.7143979019 + l1_8*-2.7779203877 + l1_9*0.214383903 + l1_10*-1.3111536623 + l1_11*-2.3148813568 + l1_12*-2.4755355804 + l1_13*-0.6819733236 + l1_14*0.4425615226 + l1_15*-0.1298218043 + l1_16*-1.1744832824 + l1_17*-0.395194848 + l1_18*-0.2803397703 + l1_19*-0.4505071197 + l1_20*-0.8934956598 + l1_21*3.3232916348 + l1_22*-1.7359534851 + l1_23*3.8540421743 + l1_24*1.4424032523 + l1_25*0.2639823693 + l1_26*0.3597053634 + l1_27*-1.0470693728 + l1_28*1.4133480357 + l1_29*0.6248098695)
    l2_5 = PineActivationFunctionTanh(l1_0*0.2215807411 + l1_1*-0.5628295071 + l1_2*-0.8795982905 + l1_3*0.9101585104 + l1_4*-1.0176831976 + l1_5*-0.0728884401 + l1_6*0.6676331658 + l1_7*-0.7342174108 + l1_8*9.4428E-4 + l1_9*0.6439774272 + l1_10*-0.0345236026 + l1_11*0.5830977027 + l1_12*-0.4058921837 + l1_13*-0.3991888077 + l1_14*-1.0090426973 + l1_15*-0.9324780698 + l1_16*-0.0888749165 + l1_17*0.2466351736 + l1_18*0.4993304601 + l1_19*-1.115408696 + l1_20*0.9914246705 + l1_21*0.9687743445 + l1_22*0.1117130875 + l1_23*0.7825109733 + l1_24*0.2217023612 + l1_25*0.3081256411 + l1_26*-0.1778007966 + l1_27*-0.3333287743 + l1_28*1.0156352461 + l1_29*-0.1456257813)
    l2_6 = PineActivationFunctionTanh(l1_0*-0.5461783383 + l1_1*0.3246015999 + l1_2*0.1450605434 + l1_3*-1.3179944349 + l1_4*-1.5481775261 + l1_5*-0.679685633 + l1_6*-0.9462335139 + l1_7*-0.6462399371 + l1_8*0.0991658683 + l1_9*0.1612892194 +l1_10*-1.037660602 + l1_11*-0.1044778824 + l1_12*0.8309203243 + l1_13*0.7714766458 + l1_14*0.2566767663 + l1_15*0.8649416329 + l1_16*-0.5847461285 + l1_17*-0.6393969272 + l1_18*0.8014049359 + l1_19*0.2279568228 + l1_20*1.0565217821 + l1_21*0.134738029 + l1_22*0.3420395576 + l1_23*-0.2417397219 + l1_24*0.3083072038 + l1_25*0.6761739059 + l1_26*-0.4653817053 + l1_27*-1.0634057566 + l1_28*-0.5658892281 + l1_29*-0.6947283681)
    l2_7 = PineActivationFunctionTanh(l1_0*-0.5450410944 + l1_1*0.3912849372 + l1_2*-0.4118641117 + l1_3*0.7124695074 + l1_4*-0.7510266122 + l1_5*1.4065673913 + l1_6*0.9870731545 + l1_7*-0.2609363107 + l1_8*-0.3583639958 + l1_9*0.5436375706 +l1_10*0.4572450099 + l1_11*-0.4651538878 + l1_12*-0.2180218212 + l1_13*0.5241262959 + l1_14*-0.8529323253 + l1_15*-0.4200378937 + l1_16*0.4997885721 + l1_17*-1.1121528189 + l1_18*0.5992411048 + l1_19*-1.0263270781 + l1_20*-1.725160642 + l1_21*-0.2653995722 + l1_22*0.6996703032 + l1_23*0.348549086 + l1_24*0.6522482482 + l1_25*-0.7931928436 + l1_26*-0.5107994359 + l1_27*0.0509642698 + l1_28*0.8711187423 + l1_29*0.8999449627)
    l2_8 = PineActivationFunctionTanh(l1_0*-0.7111081522 + l1_1*0.4296245062 + l1_2*-2.0720732038 + l1_3*-0.4071818684 + l1_4*1.0632721681 + l1_5*0.8463224325 + l1_6*-0.6083948423 + l1_7*1.1827669608 + l1_8*-0.9572307844 + l1_9*-0.9080517673 + l1_10*-0.0479029057 + l1_11*-1.1452853213 + l1_12*0.2884352688 + l1_13*0.1767851586 + l1_14*-1.089314461 + l1_15*1.2991763966 + l1_16*1.6236630806 + l1_17*-0.7720263697 + l1_18*-0.5011541755 + l1_19*-2.3919413568 + l1_20*0.0084018338 + l1_21*0.9975216139 + l1_22*0.4193541029 + l1_23*1.4623834571 + l1_24*-0.6253069691 + l1_25*0.6119677341 + l1_26*0.5423948388 + l1_27*1.0022450377 + l1_28*-1.2392984069 + l1_29*1.5021529822)
 
    l3_0 = PineActivationFunctionTanh(l2_0*0.3385061186 + l2_1*0.6218531956 + l2_2*-0.7790340983 + l2_3*0.1413078332 + l2_4*0.1857010624 + l2_5*-0.1769456351 + l2_6*-0.3242337911 + l2_7*-0.503944883 + l2_8*0.1540568869)
 
entryYesterday = security(syminfo.tickerid, largeTimeframe, ohlc4[2])
entryToday = security(syminfo.tickerid, largeTimeframe, ohlc4[1])
entry = (entryToday-entryYesterday)/entryYesterday
exitYesterday = security(syminfo.tickerid, smallTimeframe, ohlc4[2])
exitToday = security(syminfo.tickerid, smallTimeframe, ohlc4[1])
exit = (exitToday-exitYesterday)/exitYesterday

exitPrediction = ANN(exit)
entryPrediction = ANN(entry)
goLong = entryPrediction < -threshold and exitPrediction < -threshold
goShort = entryPrediction > threshold and exitPrediction > threshold
 
strategy.close("LONG", exitPrediction >= threshold or entryPrediction >= threshold)
strategy.close("SHORT", exitPrediction <= -threshold or entryPrediction <= threshold)

strategy.entry("LONG", strategy.long, when = goLong)
strategy.entry("SHORT", strategy.short, when = goShort) 

plot(entryPrediction, color=blue)
plot(exitPrediction, color=yellow)

bgcolor(goLong ? green : goShort ? red : gray, transp=20)