La estrategia permite un seguimiento claro de las tendencias a través de una combinación de varios indicadores técnicos. La estrategia incluye principalmente las siguientes partes:
La estrategia primero determina la dirección de la tendencia de los precios a través de la línea media. En concreto, se calcula el promedio de los precios en un período determinado, y el canal de banda de este promedio. Una ruptura del canal de precios sugiere una posible reversión de la tendencia.
Luego se combina con el indicador de KD en el indicador aleatorio para determinar si el precio está sobrecomprado o sobrevendido. El estado de sobrecompra sobreventa a menudo indica la oportunidad de una reversión del precio.
Luego, se utiliza la información de la cantidad de transacciones para determinar el flujo de entrada y salida de fondos mediante la construcción de indicadores de precio. Un aumento en la cantidad de capacidad indica el flujo de entrada de fondos y la evolución de la tendencia, mientras que una disminución en la cantidad de capacidad representa el flujo de salida de fondos y la reversión de la tendencia.
Para juzgar la calidad de la tendencia, se construye un índice de datos de mercado utilizando el rango promedio de fluctuaciones de precios y se calcula su EMA para juzgar la fuerza de la tendencia. Esto puede filtrar algunas tendencias falsas.
Finalmente, el RSI puede ser utilizado para detectar desviaciones en los precios y las fluctuaciones, que también suelen ser indicadores de un inminente cambio de tendencia.
La combinación de la información de estos indicadores permite determinar con mayor claridad la tendencia de los precios. La estrategia construye posiciones de más cabeza cuando el oro se cruza en la línea de la línea media, y posiciones de cabeza vacía cuando la horca muere.
Las medidas de respuesta al riesgo:
La estrategia puede ser optimizada en los siguientes aspectos:
Utiliza métodos de aprendizaje automático para optimizar los parámetros para que los indicadores se ajusten mejor a las características de las diferentes variedades
Añadir módulos de evaluación de modelos y ajustar el peso de los indicadores en función de la dinámica de las diferentes fases del mercado
Aumentar las estrategias de stop loss adaptativas, que permiten ajustar los puntos de stop loss según la volatilidad del mercado
Extraer más características, combinadas con el aprendizaje profundo, para un juicio de tendencias más preciso
Desarrollo de módulos de ajuste automático de señales para tratar conflictos de indicadores y situaciones de señales susceptibles a errores
Aumentar los modelos integrados, integrar más criterios de indicadores técnicos y formar resultados de predicción sistemáticos
Explorar indicadores sin parámetros y reducir la dependencia de los indicadores de los parámetros
La estrategia tiene una cierta ventaja y perspectivas de aplicación en el campo de la estrategia de determinación de tendencias, al integrar la fuerza de varios indicadores técnicos para juzgar la tendencia de los precios de manera más integral. Sin embargo, se necesita una optimización continua para mejorar la precisión de los juicios y reducir el riesgo de error para operar de manera estable en el mundo real. En el futuro, se puede introducir más tecnologías como el aprendizaje automático para la actualización inteligente.
/*backtest
start: 2022-09-21 00:00:00
end: 2023-09-27 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=3
//Market Cipher Update 2 - updated 8th Oct 2019
//Momentum Curves with green and red dots
strategy(title="MarketCipher B", shorttitle="MarketCipher B")
n1 = input(9, "Channel Length")
n2 = input(12, "Average Length")
obLevel1 = input(60, "Over Bought Level 1")
obLevel2 = input(53, "Over Bought Level 2")
osLevel1 = input(-60, "Over Sold Level 1")
osLevel2 = input(-53, "Over Sold Level 2")
osLevel3 = input(-100, "Over Sold Level 2")
ap = hlc3
esa = ema(ap, n1)
d = ema(abs(ap - esa), n1)
ci = (ap - esa) / (0.015 * d)
tci = ema(ci, n2)
wt1 = tci
wt2 = sma(wt1,3)
plot(0, color=gray, title="Zero Line")
plot(obLevel1, color=red, style=3, title="Bottom")
plot(osLevel1, color=green, style=3, title="Top")
plot(wt1, color=#BFE4FF, style=4, title= "Lt Blue Wave")
plot(wt2, color=#673ab7, style=4, title="Blue Wave", transp=40)
plot(wt1-wt2, color=yellow, style=4, transp=40, title="wave1-wave2")
//green dots and crosses
plotshape(crossover(wt1, wt2) and osLevel1 ? wt2 : na, title="Pos Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=#3FFF00, transp=20)
plotshape(crossover(wt2, wt1) and osLevel1 ? wt1 : na, title="Neg Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=red, transp=20)
plotshape(crossover(wt1, wt2) and wt2 < -59 ? wt2 : na, title="Pos Crossover", location=location.bottom, style=shape.circle, size=size.tiny, color=#3FFF00, transp=20)
plotshape(crossover(wt2, wt1) and wt1 > 59 ? wt2 : na, title="Neg Crossover", location=location.top, style=shape.circle, size=size.tiny, color=red, transp=20)
buy= crossover(wt1,wt2) // Define our buy/sell conditions, using pine inbuilt functions.
sell= crossover(wt2,wt1)
ordersize=floor(strategy.equity/close) // To dynamically calculate the order size as the account equity increases or decreases.
strategy.entry("long",strategy.long,ordersize,when=buy) // Buys when buy condition met
strategy.close("long", when = sell ) // Closes position when sell condition met
strategy.entry("short",strategy.short,ordersize,when=sell)
strategy.close("short",when = buy )
//soch RSI with divergences
smoothKw = input(3, minval=1)
smoothDw = input(3, minval=1)
lengthRSIw = input(14, minval=1)
lengthStochw = input(14, minval=1)
uselogw = input(true, title="Log")
srcInw = input(close, title="Source")
showdivsw = input(true, title="Show Divergences")
showhiddenw = input(false, title="Show Hidden Divergences")
showchanw = input(false, title="Show Divergences Channel")
srcw = uselogw ? log(srcInw) : srcInw
rsi1w = rsi(srcw, lengthRSIw)
kkw = sma(stoch(rsi1w, rsi1w, rsi1w, lengthStochw), smoothKw)
dw = sma(kkw, smoothDw)
hmw = input(false, title="Use Average of both K & D")
kw = hmw ? avg(kkw, dw) : kkw
aw = plot(kkw, color=blue, linewidth=1, transp=0, title="K")
bw = plot(dw, color=orange, linewidth=1, transp=0, title="D")
fw = kkw >= dw ? blue : orange
fill(aw, bw, title="KD Fill", color=white)
//------------------------------
//@RicardoSantos' Divergence Script
f_top_fractal(_src)=>_src[4] < _src[2] and _src[3] < _src[2] and _src[2] > _src[1] and _src[2] > _src[0]
f_bot_fractal(_src)=>_src[4] > _src[2] and _src[3] > _src[2] and _src[2] < _src[1] and _src[2] < _src[0]
f_fractalize(_src)=>f_top_fractal(_src) ? 1 : f_bot_fractal(_src) ? -1 : 0
//-------------------------
fractal_top = f_fractalize(kw) > 0 ? kw[2] : na
fractal_bot = f_fractalize(kw) < 0 ? kw[2] : na
high_prev = valuewhen(fractal_top, kw[2], 0)[2]
high_price = valuewhen(fractal_top, high[2], 0)[2]
low_prev = valuewhen(fractal_bot, kw[2], 0)[2]
low_price = valuewhen(fractal_bot, low[2], 0)[2]
regular_bearish_diva = fractal_top and high[2] > high_price and kw[2] < high_prev
hidden_bearish_diva = fractal_top and high[2] < high_price and kw[2] > high_prev
regular_bullish_diva = fractal_bot and low[2] < low_price and kw[2] > low_prev
hidden_bullish_diva = fractal_bot and low[2] > low_price and kw[2] < low_prev
//-------------------------
plot(showchanw?fractal_top:na, title="Top Div Channel", offset=-2, color=gray)
plot(showchanw?fractal_bot:na, title="Bottom Div Channel", offset=-2, color=gray)
col1 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : na
col2 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : na
col3 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : showchanw ? gray : na
col4 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : showchanw ? gray : na
plot(title='H F', series=showdivsw and fractal_top ? kw[2] : na, color=col1, linewidth=2, offset=-2)
plot(title='L F', series=showdivsw and fractal_bot ? kw[2] : na, color=col2, linewidth=2, offset=-2)
plot(title='H D', series=showdivsw and fractal_top ? kw[2] : na, style=circles, color=col3, linewidth=3, offset=-2)
plot(title='L D', series=showdivsw and fractal_bot ? kw[2] : na, style=circles, color=col4, linewidth=3, offset=-2)
plotshape(title='+RBD', series=showdivsw and regular_bearish_diva ? kw[2] : na, text='R', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2)
plotshape(title='+HBD', series=showdivsw and hidden_bearish_diva and showhiddenw ? kw[2] : na, text='H', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2)
plotshape(title='-RBD', series=showdivsw and regular_bullish_diva ? kw[2] : na, text='R', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2)
plotshape(title='-HBD', series=showdivsw and hidden_bullish_diva and showhiddenw ? kw[2] : na, text='H', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2)
//money flow
colorRed = #ff0000
colorGreen = #03ff00
ma(matype, src, length) =>
if matype == "RMA"
rma(src, length)
else
if matype == "SMA"
sma(src, length)
else
if matype == "EMA"
ema(src, length)
else
if matype == "WMA"
wma(src, length)
else
if matype == "VWMA"
vwma(src, length)
else
src
rsiMFIperiod = input(60, "RSI+MFI Period")
rsiMFIMultiplier = input(190, "RSI+MFI Area multiplier")
MFRSIMA = input(defval="SMA", title="MFRSIMA", options=["RMA", "SMA", "EMA", "WMA", "VWMA"])
candleValue = (close - open) / (high - low)
MVC = ma(MFRSIMA, candleValue, rsiMFIperiod)
color_area = MVC > 0 ? green : red
RSIMFIplot = plot(MVC * rsiMFIMultiplier, title="RSI+MFI Area", color=color_area, transp=35)
fill(RSIMFIplot, plot(0), color_area, transp=50)
//rsi
//Bullish Divergence (green triangle)
//Hidden Bullish Divergence (green circle)
//Bearish Divergence (red triangle)
//Hidden Bearish Divergence (red circle)
lend = 14
bearish_div_rsi = input(60, "Min Bearish RSI", minval=50, maxval=100)
bullish_div_rsi = input(40, "Max Bullish RSI", minval=0, maxval=50)
// RSI code
rsi = rsi(close, lend)
plot(rsi, color=#6DFFE1, linewidth=2, transp=0, title="RSI")
// DIVS code
xbars = 60
hb = abs(highestbars(rsi, xbars)) // Finds bar with highest value in last X bars
lb = abs(lowestbars(rsi, xbars)) // Finds bar with lowest value in last X bars
// Defining variable values, mandatory in Pine 3
max = na
max_rsi = na
min = na
min_rsi = na
bearish_div = na
bullish_div = na
hidden_bearish_div = na
hidden_bullish_div = na
div_alert = na
hidden_div_alert = na
// If bar with lowest / highest is current bar, use it's value
max := hb == 0 ? close : na(max[1]) ? close : max[1]
max_rsi := hb == 0 ? rsi : na(max_rsi[1]) ? rsi : max_rsi[1]
min := lb == 0 ? close : na(min[1]) ? close : min[1]
min_rsi := lb == 0 ? rsi : na(min_rsi[1]) ? rsi : min_rsi[1]
// Compare high of current bar being examined with previous bar's high
// If curr bar high is higher than the max bar high in the lookback window range
if close > max // we have a new high
max := close // change variable "max" to use current bar's high value
if rsi > max_rsi // we have a new high
max_rsi := rsi // change variable "max_rsi" to use current bar's RSI value
if close < min // we have a new low
min := close // change variable "min" to use current bar's low value
if rsi < min_rsi // we have a new low
min_rsi := rsi // change variable "min_rsi" to use current bar's RSI value
// Detects divergences between price and indicator with 1 candle delay so it filters out repeating divergences
if (max[1] > max[2]) and (rsi[1] < max_rsi) and (rsi <= rsi[1]) and (rsi[1] >= bearish_div_rsi)
bearish_div := true
div_alert := true
if (min[1] < min[2]) and (rsi[1] > min_rsi) and (rsi >= rsi[1]) and (rsi[1] <= bullish_div_rsi)
bullish_div := true
div_alert := true
// Hidden divergences
if (max[1] < max[2]) and (rsi[1] < max_rsi)
hidden_bearish_div := true
hidden_div_alert := true
if (min[1] > min[2]) and (rsi[1] > min_rsi)
hidden_bullish_div := true
hidden_div_alert := true
// Alerts
alertcondition(div_alert, title='RSI Divergence', message='RSI Divergence')
alertcondition(hidden_div_alert, title='Hidden RSI Divergence', message='Hidden RSI Divergence')
// Plots divergences with offest
plotshape((bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.diamond, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear Div")
plotshape((bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.diamond, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull Div")
plotshape((hidden_bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.circle, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear hDiv")
plotshape((hidden_bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.circle, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull hDiv")
//wave divergences
WTCross = cross(wt1, wt2)
WTCrossUp = wt2 - wt1 <= 0
WTCrossDown = wt2 - wt1 >= 0
WTFractal_top = f_fractalize(wt1) > 0 and wt1[2] ? wt1[2] : na
WTFractal_bot = f_fractalize(wt1) < 0 and wt1[2] ? wt1[2] : na
WTHigh_prev = valuewhen(WTFractal_top, wt1[2], 0)[2]
WTHigh_price = valuewhen(WTFractal_top, high[2], 0)[2]
WTLow_prev = valuewhen(WTFractal_bot, wt1, 0)[2]
WTLow_price = valuewhen(WTFractal_bot, low[2], 0)[2]
WTRegular_bearish_div = WTFractal_top and high[2] > WTHigh_price and wt1[2] < WTHigh_prev
WTRegular_bullish_div = WTFractal_bot and low[2] < WTLow_price and wt1[2] > WTLow_prev
bearWTSignal = WTRegular_bearish_div and WTCrossDown
bullWTSignal = WTRegular_bullish_div and WTCrossUp
WTCol1 = bearWTSignal ? #ff0000 : na
WTCol2 = bullWTSignal ? #00FF00EB : na
plot(series = WTFractal_top ? wt1[2] : na, title='Bearish Divergence', color=WTCol1, linewidth=5, transp=60)
plot(series = WTFractal_bot ? wt1[2] : na, title='Bullish Divergence', color=WTCol2, linewidth=5, transp=60)
//2nd wave
WTFractal_topa = f_fractalize(wt2) > 0 and wt2[2] ? wt2[2] : na
WTFractal_bota = f_fractalize(wt2) < 0 and wt2[2] ? wt2[2] : na
WTHigh_preva = valuewhen(WTFractal_topa, wt2[2], 0)[2]
WTHigh_pricea = valuewhen(WTFractal_topa, high[2], 0)[2]
WTLow_preva = valuewhen(WTFractal_bota, wt2, 0)[2]
WTLow_pricea = valuewhen(WTFractal_bota, low[2], 0)[2]
WTRegular_bearish_diva = WTFractal_topa and high[2] > WTHigh_pricea and wt2[2] < WTHigh_preva
WTRegular_bullish_diva = WTFractal_bota and low[2] < WTLow_pricea and wt2[2] > WTLow_preva
bearWTSignala = WTRegular_bearish_diva and WTCrossDown
bullWTSignala = WTRegular_bullish_diva and WTCrossUp
WTCol1a = bearWTSignala ? #ff0000 : na
WTCol2a = bullWTSignala ? #00FF00EB : na
plot(series = WTFractal_topa ? wt2[2] : na, title='Bearish Divergence', color=WTCol1a, linewidth=5, transp=60)
plot(series = WTFractal_bota ? wt2[2] : na, title='Bullish Divergence', color=WTCol2a, linewidth=5, transp=60)