
Esta estrategia es una estrategia típica de seguimiento de tendencias, ya que construye bandas de precios suaves utilizando promedios móviles suaves y integra varios promedios móviles suaves para lograr la función de filtrar tendencias en tiempo real.
La estrategia capta la tendencia de los precios mediante la construcción de bandas de precios suaves y la integración de filtros de medias móviles para confirmar la dirección de la tendencia, y es una estrategia típica de seguimiento de tendencias. Al ajustar los parámetros, se puede adaptar con flexibilidad a diferentes tipos de entornos de mercado en diferentes períodos.
La solución:
Esta estrategia es una estrategia típica de seguimiento de tendencias, que sigue continuamente la tendencia de los precios mediante la construcción de bandas de medias móviles suaves, combinadas con filtros auxiliares para evitar señales ineficaces. La ventaja de la estrategia reside en la construcción de bandas de precios suaves, que pueden capturar mejor el giro de la tendencia de los precios.
/*backtest
start: 2023-12-03 00:00:00
end: 2023-12-10 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy", overlay=true )
// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma = 6
phase = 2
power = 2
// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
xvnoise = abs(src - src[1])
nfastend = 0.666
nslowend = 0.0645
nsignal = abs(src - src[len])
nnoise = sum(xvnoise, len)
nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
nAMA = 0.0
nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))
t3(src, len)=>
xe1_1 = ema(src, len)
xe2_1 = ema(xe1_1, len)
xe3_1 = ema(xe2_1, len)
xe4_1 = ema(xe3_1, len)
xe5_1 = ema(xe4_1, len)
xe6_1 = ema(xe5_1, len)
b_1 = 0.7
c1_1 = -b_1*b_1*b_1
c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)
denominator != 0
? numerator / denominator
: 0
hwma(src, termsNumber) =>
sum = 0.0
weightSum = 0.0
termMult = (termsNumber - 1) / 2
for i = 0 to termsNumber - 1
weight = getWeight(termMult, i - termMult)
sum := sum + nz(src[i]) * weight
weightSum := weightSum + weight
sum / weightSum
get_jurik(length, phase, power, src)=>
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = pow(beta, power)
jma = 0.0
e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
jma := e2 + nz(jma[1])
variant(src, type, len ) =>
v1 = sma(src, len) // Simple
v2 = ema(src, len) // Exponential
v3 = 2 * v2 - ema(v2, len) // Double Exponential
v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential
v5 = wma(src, len) // Weighted
v6 = vwma(src, len) // Volume Weighted
v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed
v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull
v9 = linreg(src, len, lsmaOffset) // Least Squares
v10 = alma(src, len, almaOffset, almaSigma) // Arnaud Legoux
v11 = kama(src, len) // KAMA
ema1 = ema(src, len)
ema2 = ema(ema1, len)
v13 = t3(src, len) // T3
v14 = ema1+(ema1-ema2) // Zero Lag Exponential
v15 = hwma(src, len) // Henderson Moving average thanks to @everget
ahma = 0.0
ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average
v16 = ahma
v17 = get_jurik( len, phase, power, src)
type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1
smoothMA(o, h, l, c, maLoop, type, len) =>
ma_o = 0.0
ma_h = 0.0
ma_l = 0.0
ma_c = 0.0
if maLoop == 1
ma_o := variant(o, type, len)
ma_h := variant(h, type, len)
ma_l := variant(l, type, len)
ma_c := variant(c, type, len)
if maLoop == 2
ma_o := variant(variant(o ,type, len),type, len)
ma_h := variant(variant(h ,type, len),type, len)
ma_l := variant(variant(l ,type, len),type, len)
ma_c := variant(variant(c ,type, len),type, len)
if maLoop == 3
ma_o := variant(variant(variant(o ,type, len),type, len),type, len)
ma_h := variant(variant(variant(h ,type, len),type, len),type, len)
ma_l := variant(variant(variant(l ,type, len),type, len),type, len)
ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
if maLoop == 4
ma_o := variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len)
ma_h := variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len)
ma_l := variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len)
ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
if maLoop == 5
ma_o := variant(variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len),type, len)
ma_h := variant(variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len),type, len)
ma_l := variant(variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len),type, len)
ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
[ma_o, ma_h, ma_l, ma_c]
smoothHA( o, h, l, c ) =>
hao = 0.0
hac = ( o + h + l + c ) / 4
hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
hah = max(h, max(hao, hac))
hal = min(l, min(hao, hac))
[hao, hah, hal, hac]
// ---- Main Ribbon ----
haSmooth = input(true, title=" Use HA as source ? " )
length = input(11, title=" MA1 Length", minval=1, maxval=1000)
maLoop = input(3, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
haSmooth2 = input(true, title=" Use HA as source ? " )
// ---- Trend ----
ma_use = input(true, title=" ----- Use MA Filter ( For Lower Timeframe Swings / Scalps ) ? ----- " )
ma_source = input(defval = close, title = "MA - Source", type = input.source)
ma_length = input(100,title="MA - Length", minval=1 )
ma_type = input("SMA", title="MA - Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
ma_useHA = input(defval = false, title = "Use HA Candles as Source ?")
ma_rsl = input(true, title = "Use Rising / Falling Logic ?" )
// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)
_open_ma = haSmooth ? ha_open : open
_high_ma = haSmooth ? ha_high : high
_low_ma = haSmooth ? ha_low : low
_close_ma = haSmooth ? ha_close : close
[ _open, _high, _low, _close ] = smoothMA( _open_ma, _high_ma, _low_ma, _close_ma, maLoop, type, length)
[ ha_open2, ha_high2, ha_low2, ha_close2 ] = smoothHA(_open, _high, _low, _close)
_open_ma2 = haSmooth2 ? ha_open2 : _open
_high_ma2 = haSmooth2 ? ha_high2 : _high
_low_ma2 = haSmooth2 ? ha_low2 : _low
_close_ma2 = haSmooth2 ? ha_close2 : _close
ribbonColor = _close_ma2 > _open_ma2 ? color.lime : color.red
p_open = plot(_open_ma2, title="Ribbon - Open", color=ribbonColor, transp=70)
p_close = plot(_close_ma2, title="Ribbon - Close", color=ribbonColor, transp=70)
fill(p_open, p_close, color = ribbonColor, transp = 40 )
// ----- FILTER
ma = 0.0
if ma_use == true
ma := variant( ma_useHA ? ha_close : ma_source, ma_type, ma_length )
maFilterShort = ma_use ? ma_rsl ? falling(ma,1) : ma_useHA ? ha_close : close < ma : true
maFilterLong = ma_use ? ma_rsl ? rising(ma,1) : ma_useHA ? ha_close : close > ma : true
colorTrend = rising(ma,1) ? color.green : color.red
plot( ma_use ? ma : na, title="MA Trend", color=colorTrend, transp=80, transp=70, linewidth = 5)
long = crossover(_close_ma2, _open_ma2 ) and maFilterLong
short = crossunder(_close_ma2, _open_ma2 ) and maFilterShort
closeAll = cross(_close_ma2, _open_ma2 )
plotshape( short , title="Short", color=color.red, transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long , title="Long", color=color.lime, transp=80, style=shape.triangleup, location=location.belowbar, size=size.small)
//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear = input(2018, "Backtest Start Year",minval=1980)
testStartMonth = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false
if testPeriod() and long
strategy.entry( "long", strategy.long )
if testPeriod() and short
strategy.entry( "short", strategy.short )
if closeAll
strategy.close_all( when = closeAll )