Divergencia de convergencia de la media móvil ponderada por volumen

El autor:¿ Qué pasa?, Fecha: 2023-12-13 17:58:11
Las etiquetas:

img

Resumen general

Esta estrategia es una versión mejorada del indicador MACD clásico, que utiliza 11 tipos diferentes de promedios móviles para suavizar la curva de precios y reducir las señales engañosas. El indicador consiste en la línea rápida, la línea lenta y el histograma. La línea rápida y la línea lenta adoptan respectivamente el promedio móvil rápido y el promedio móvil lento de los precios. El histograma representa la diferencia entre la línea rápida y la línea lenta. Las señales de compra se generan cuando la línea rápida cruza la línea lenta de abajo a arriba, mientras que las señales de venta se generan de arriba a abajo.

Principios de estrategia

  1. Calcular la línea de media móvil rápida MA12. 11 métodos de cálculo diferentes para las líneas de media móvil están disponibles para su selección, con la línea de VAR de la tasa de variabilidad de volumen como predeterminado.

  2. Calcular la línea de media móvil lenta MA26. 11 métodos de cálculo diferentes para las líneas de media móvil están disponibles para la selección, con la línea de VAR de la tasa de variabilidad de volumen como predeterminado.

  3. Calcular la diferencia entre las líneas rápidas y lentas SRC2 = MA12 - MA26.

  4. Calcular la línea de activación MATR para SRC2 utilizando una línea media móvil con una longitud de 9. 11 métodos de cálculo diferentes están disponibles para la selección, con la línea VAR de la tasa de variabilidad de volumen por defecto.

  5. Calcular el histograma MACD HIST = SRC2 - MATR. Las señales de compra se generan cuando el histograma cambia de negativo a positivo. Las señales de venta se generan cuando el histograma cambia de positivo a negativo.

Análisis de las ventajas

  1. Se pueden seleccionar 11 tipos diferentes de líneas de media móvil para calcular la línea rápida, la línea lenta y la línea de disparo, lo que reduce en gran medida el retraso de las medias móviles comunes y mejora la precisión de las señales de predicción.

  2. La línea VAR de la tasa de variabilidad de volumen puede ajustar automáticamente las ponderaciones de la media móvil para adaptarse mejor a los cambios del mercado.

  3. Las líneas de media móvil doble con zona tampón pueden filtrar eficazmente el ruido del mercado.

  4. El histograma MACD como señal de activación puede superar el problema de retraso provocado por el cruce tradicional de líneas MACD rápidas y lentas.

Análisis de riesgos

  1. El indicador MACD tiene una capacidad débil para juzgar la tendencia o la consolidación del mercado.

  2. El VAR reduce parcialmente pero no puede resolver por completo el problema.

  3. La acumulación de errores puede conducir a señales erróneas o a señales eficaces que faltan.

Dirección para la optimización

  1. Elegir los métodos de cálculo de la media móvil correspondiente para las condiciones específicas del mercado basándose en los resultados de las pruebas de retroceso.

  2. Optimizar los parámetros de longitud de la línea rápida, línea lenta y línea de disparo para encontrar las mejores combinaciones de parámetros para reducir las señales erróneas.

  3. Añadir indicadores auxiliares como el RSI y las bandas de Bollinger para confirmar las señales de compra/venta.

Conclusión

Esta estrategia es una versión optimizada para el indicador MACD clásico. Al utilizar múltiples patrones de promedio móvil para calcular la línea rápida, la línea lenta e histograma del MACD, mejora enormemente la utilidad de este indicador. Mientras tanto, también tiene ciertas limitaciones.


/*backtest
start: 2023-11-12 00:00:00
end: 2023-12-12 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © KivancOzbilgic


//developer: Gerald Appel
//author: @kivancozbilgic

strategy("MACD ReLoaded","MACDRe", overlay=true)
src = input(close, title="Source")
length=input(12, "Short Moving Average Length", minval=1)
length1=input(26, "Long Moving Average Length", minval=1)
length2=input(9, "Trigger Length", minval=1)
T3a1 = input(0.7, "TILLSON T3 Volume Factor", step=0.1)
barcoloring = input(title="Bar Coloring On/Off ?", type=input.bool, defval=true)

mav = input(title="Moving Average Type", defval="VAR", options=["SMA", "EMA", "WMA", "DEMA", "TMA", "VAR", "WWMA", "ZLEMA", "TSF", "HULL", "TILL"])
Var_Func(src,length)=>
    valpha=2/(length+1)
    vud1=src>src[1] ? src-src[1] : 0
    vdd1=src<src[1] ? src[1]-src : 0
    vUD=sum(vud1,9)
    vDD=sum(vdd1,9)
    vCMO=nz((vUD-vDD)/(vUD+vDD))
    VAR=0.0
    VAR:=nz(valpha*abs(vCMO)*src)+(1-valpha*abs(vCMO))*nz(VAR[1])
VAR=Var_Func(src,length)
DEMA = ( 2 * ema(src,length)) - (ema(ema(src,length),length) )
Wwma_Func(src,length)=>
    wwalpha = 1/ length
    WWMA = 0.0
    WWMA := wwalpha*src + (1-wwalpha)*nz(WWMA[1])
WWMA=Wwma_Func(src,length)
Zlema_Func(src,length)=>
    zxLag = length/2==round(length/2) ? length/2 : (length - 1) / 2
    zxEMAData = (src + (src - src[zxLag]))
    ZLEMA = ema(zxEMAData, length)
ZLEMA=Zlema_Func(src,length)
Tsf_Func(src,length)=>
    lrc = linreg(src, length, 0)
    lrc1 = linreg(src,length,1)
    lrs = (lrc-lrc1)
    TSF = linreg(src, length, 0)+lrs
TSF=Tsf_Func(src,length)
HMA = wma(2 * wma(src, length / 2) - wma(src, length), round(sqrt(length)))
T3e1=ema(src, length)
T3e2=ema(T3e1,length)
T3e3=ema(T3e2,length)
T3e4=ema(T3e3,length)
T3e5=ema(T3e4,length)
T3e6=ema(T3e5,length)
T3c1=-T3a1*T3a1*T3a1
T3c2=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c3=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c4=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T3=T3c1*T3e6+T3c2*T3e5+T3c3*T3e4+T3c4*T3e3


getMA(src, length) =>
    ma = 0.0
    if mav == "SMA"
        ma := sma(src, length)
        ma

    if mav == "EMA"
        ma := ema(src, length)
        ma

    if mav == "WMA"
        ma := wma(src, length)
        ma

    if mav == "DEMA"
        ma := DEMA
        ma

    if mav == "TMA"
        ma := sma(sma(src, ceil(length / 2)), floor(length / 2) + 1)
        ma

    if mav == "VAR"
        ma := VAR
        ma

    if mav == "WWMA"
        ma := WWMA
        ma

    if mav == "ZLEMA"
        ma := ZLEMA
        ma

    if mav == "TSF"
        ma := TSF
        ma

    if mav == "HULL"
        ma := HMA
        ma

    if mav == "TILL"
        ma := T3
        ma
    ma
    
MA12=getMA(src, length)


Var_Func1(src,length1)=>
    valpha1=2/(length1+1)
    vud11=src>src[1] ? src-src[1] : 0
    vdd11=src<src[1] ? src[1]-src : 0
    vUD1=sum(vud11,9)
    vDD1=sum(vdd11,9)
    vCMO1=nz((vUD1-vDD1)/(vUD1+vDD1))
    VAR1=0.0
    VAR1:=nz(valpha1*abs(vCMO1)*src)+(1-valpha1*abs(vCMO1))*nz(VAR1[1])
VAR1=Var_Func1(src,length1)
DEMA1 = ( 2 * ema(src,length1)) - (ema(ema(src,length1),length1) )
Wwma_Func1(src,length1)=>
    wwalpha1 = 1/ length1
    WWMA1 = 0.0
    WWMA1 := wwalpha1*src + (1-wwalpha1)*nz(WWMA1[1])
WWMA1=Wwma_Func1(src,length1)
Zlema_Func1(src,length1)=>
    zxLag1 = length1/2==round(length1/2) ? length1/2 : (length1 - 1) / 2
    zxEMAData1 = (src + (src - src[zxLag1]))
    ZLEMA1 = ema(zxEMAData1, length1)
ZLEMA1=Zlema_Func1(src,length1)
Tsf_Func1(src,length1)=>
    lrc1 = linreg(src, length1, 0)
    lrc11 = linreg(src,length1,1)
    lrs1 = (lrc1-lrc11)
    TSF1 = linreg(src, length1, 0)+lrs1
TSF1=Tsf_Func1(src,length1)
HMA1 = wma(2 * wma(src, length1 / 2) - wma(src, length1), round(sqrt(length1)))
T3e11=ema(src, length1)
T3e21=ema(T3e11,length1)
T3e31=ema(T3e21,length1)
T3e41=ema(T3e31,length1)
T3e51=ema(T3e41,length1)
T3e61=ema(T3e51,length1)
T3c11=-T3a1*T3a1*T3a1
T3c21=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c31=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c41=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T31=T3c11*T3e61+T3c21*T3e51+T3c31*T3e41+T3c41*T3e31


getMA1(src, length1) =>
    ma1 = 0.0
    if mav == "SMA"
        ma1 := sma(src, length1)
        ma1

    if mav == "EMA"
        ma1 := ema(src, length1)
        ma1

    if mav == "WMA"
        ma1 := wma(src, length1)
        ma1

    if mav == "DEMA"
        ma1 := DEMA1
        ma1

    if mav == "TMA"
        ma1 := sma(sma(src, ceil(length1 / 2)), floor(length1 / 2) + 1)
        ma1

    if mav == "VAR"
        ma1 := VAR1
        ma1

    if mav == "WWMA"
        ma1:= WWMA1
        ma1

    if mav == "ZLEMA"
        ma1 := ZLEMA1
        ma1

    if mav == "TSF"
        ma1 := TSF1
        ma1

    if mav == "HULL"
        ma1 := HMA1
        ma1

    if mav == "TILL"
        ma1 := T31
        ma1
    ma1
    
MA26=getMA1(src, length1)


src2=MA12-MA26

Var_Func2(src2,length2)=>
    valpha2=2/(length2+1)
    vud12=src2>src2[1] ? src2-src2[1] : 0
    vdd12=src2<src2[1] ? src2[1]-src2 : 0
    vUD2=sum(vud12,9)
    vDD2=sum(vdd12,9)
    vCMO2=nz((vUD2-vDD2)/(vUD2+vDD2))
    VAR2=0.0
    VAR2:=nz(valpha2*abs(vCMO2)*src2)+(1-valpha2*abs(vCMO2))*nz(VAR2[1])
VAR2=Var_Func2(src2,length2)
DEMA2 = ( 2 * ema(src2,length2)) - (ema(ema(src2,length2),length2) )
Wwma_Func2(src2,length2)=>
    wwalpha2 = 1/ length2
    WWMA2 = 0.0
    WWMA2 := wwalpha2*src2 + (1-wwalpha2)*nz(WWMA2[1])
WWMA2=Wwma_Func2(src2,length2)
Zlema_Func2(src2,length2)=>
    zxLag2 = length2/2==round(length2/2) ? length2/2 : (length2 - 1) / 2
    zxEMAData2 = (src2 + (src2 - src2[zxLag2]))
    ZLEMA2 = ema(zxEMAData2, length2)
ZLEMA2=Zlema_Func2(src2,length2)
Tsf_Func2(src2,length2)=>
    lrc2 = linreg(src2, length2, 0)
    lrc12 = linreg(src2,length2,1)
    lrs2 = (lrc2-lrc12)
    TSF2 = linreg(src2, length2, 0)+lrs2
TSF2=Tsf_Func2(src2,length2)
HMA2 = wma(2 * wma(src2, length2 / 2) - wma(src2, length2), round(sqrt(length2)))
T3e12=ema(src2, length2)
T3e22=ema(T3e12,length2)
T3e32=ema(T3e22,length2)
T3e42=ema(T3e32,length2)
T3e52=ema(T3e42,length2)
T3e62=ema(T3e52,length2)
T3c12=-T3a1*T3a1*T3a1
T3c22=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c32=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c42=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T32=T3c12*T3e62+T3c22*T3e52+T3c32*T3e42+T3c42*T3e32


getMA2(src2, length2) =>
    ma2 = 0.0
    if mav == "SMA"
        ma2 := sma(src2, length2)
        ma2

    if mav == "EMA"
        ma2 := ema(src2, length2)
        ma2

    if mav == "WMA"
        ma2 := wma(src2, length2)
        ma2

    if mav == "DEMA"
        ma2 := DEMA2
        ma2

    if mav == "TMA"
        ma2 := sma(sma(src2, ceil(length2 / 2)), floor(length2 / 2) + 1)
        ma2

    if mav == "VAR"
        ma2 := VAR2
        ma2

    if mav == "WWMA"
        ma2 := WWMA2
        ma2

    if mav == "ZLEMA"
        ma2 := ZLEMA2
        ma2

    if mav == "TSF"
        ma2 := TSF2
        ma2

    if mav == "HULL"
        ma2 := HMA2
        ma2

    if mav == "TILL"
        ma2 := T32
        ma2
    ma2


MATR=getMA2(MA12-MA26, length2)
hist = src2 - MATR

FromMonth = input(defval = 9, title = "From Month", minval = 1, maxval = 12)
FromDay   = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromYear  = input(defval = 2018, title = "From Year", minval = 999)
ToMonth   = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToDay     = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToYear    = input(defval = 9999, title = "To Year", minval = 999)
start     = timestamp(FromYear, FromMonth, FromDay, 00, 00)  
finish    = timestamp(ToYear, ToMonth, ToDay, 23, 59)       
window()  => time >= start and time <= finish ? true : false
buySignal = crossover(hist, 0)
if (crossover(hist, 0))
	strategy.entry("MacdLong", strategy.long, comment="MacdLong")
sellSignal = crossunder(hist, 0)
if (crossunder(hist, 0))
	strategy.entry("MacdShort", strategy.short, comment="MacdShort")
buy1= barssince(buySignal)
sell1 = barssince(sellSignal)
color1 = buy1[1] < sell1[1] ? color.green : buy1[1] > sell1[1] ? color.red : na
barcolor(barcoloring ? color1 : na)


//plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)


Más.