
La estrategia es una estrategia de comercio cuantitativa experimental que combina un indicador de promedio móvil y un algoritmo de aprendizaje automático para generar señales de comercio. La estrategia utiliza el cruce de las medias VWMA de dos períodos diferentes para determinar la dirección de la tendencia y combina dos indicadores MFI y ADX para filtrar la señal a través del algoritmo de KNN para mejorar la fiabilidad de la señal.
El indicador central de la estrategia es el promedio VWMA de dos parámetros diferentes, la línea rápida y la línea lenta. Cuando la línea rápida atraviesa la línea lenta, se genera una señal de compra, y cuando la línea rápida atraviesa la línea lenta, se genera una señal de venta. Además, la estrategia introduce dos indicadores auxiliares, MFI y ADX, para juzgar la fiabilidad de la señal en las condiciones actuales del mercado a través del algoritmo de clasificación KNN.
La idea del algoritmo kNN es comparar los nuevos datos con los datos históricos y determinar los resultados correspondientes a los datos históricos más cercanos de k, clasificando de acuerdo con este resultado histórico de acuerdo con la mayoría de los votos. Esta estrategia utiliza MFI y ADX como los dos parámetros de entrada del algoritmo kNN para determinar el movimiento histórico de los precios en la combinación de estos dos indicadores: subir o bajar, para filtrar la señal actual y mejorar la calidad de la señal.
Las respuestas:
La estrategia tiene mucho espacio para ser optimizada:
Se espera que la introducción de más indicadores y algoritmos de aprendizaje automático mejore aún más la estabilidad y la rentabilidad de las estrategias.
La estrategia es una estrategia de comercio cuantitativo experimental basada en el indicador de línea media VWMA y el algoritmo de aprendizaje automático de KNN. Tiene una gran capacidad de seguimiento de tendencias y filtración de señales a través del aprendizaje automático. El espacio de la estrategia es amplio y se espera que produzca un mejor efecto mediante la introducción de más características y algoritmos de optimización.
/*backtest
start: 2023-11-21 00:00:00
end: 2023-12-21 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © lastguru
//@version=4
strategy(title="VWMA with kNN Machine Learning: MFI/ADX", shorttitle="VWMA + kNN: MFI/ADX", overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=100)
/////////
// kNN //
/////////
// Define storage arrays for: parameter 1, parameter 2, price, result (up = 1; down = -1)
var knn1 = array.new_float(1, 0)
var knn2 = array.new_float(1, 0)
var knnp = array.new_float(1, 0)
var knnr = array.new_float(1, 0)
// Store the previous trade; buffer the current one until results are in
_knnStore (p1, p2, src) =>
var prevp1 = 0.0
var prevp2 = 0.0
var prevsrc = 0.0
array.push(knn1, prevp1)
array.push(knn2, prevp2)
array.push(knnp, prevsrc)
array.push(knnr, src >= prevsrc ? 1 : -1)
prevp1 := p1
prevp2 := p2
prevsrc := src
// Sort two arrays (MUST be of the same size) based on the first.
// In other words, when an element in the first is moved, the element in the second moves as well.
_knnGet(arr1, arr2, k) =>
sarr = array.copy(arr1)
array.sort(sarr)
ss = array.slice(sarr, 0, min(k, array.size(sarr)))
m = array.max(ss)
out = array.new_float(0)
for i = 0 to array.size(arr1) - 1
if (array.get(arr1, i) <= m)
array.push(out, array.get(arr2, i))
out
// Create a distance array from the two given parameters
_knnDistance(p1, p2) =>
dist = array.new_float(0)
n = array.size(knn1) - 1
for i = 0 to n
d = sqrt( pow(p1 - array.get(knn1, i), 2) + pow(p2 - array.get(knn2, i), 2) )
array.push(dist, d)
dist
// Make a prediction, finding k nearest neighbours
_knn(p1, p2, k) =>
slice = _knnGet(_knnDistance(p1, p2), array.copy(knnr), k)
knn = array.sum(slice)
////////////
// Inputs //
////////////
SRC = input(title="Source", type=input.source, defval=open)
FAST = input(title="Fast Length", type=input.integer, defval=13)
SLOW = input(title="Slow Length", type=input.integer, defval=19)
FILTER = input(title="Filter Length", type=input.integer, defval=13)
SMOOTH = input(title="Filter Smoothing", type=input.integer, defval=6)
KNN = input(title="kNN nearest neighbors (k)", type=input.integer, defval=23)
BACKGROUND = input(false,title = "Draw background")
////////
// MA //
////////
fastMA = vwma(SRC, FAST)
slowMA = vwma(SRC, SLOW)
/////////
// DMI //
/////////
// Wilder's Smoothing (Running Moving Average)
_rma(src, length) =>
out = 0.0
out := ((length - 1) * nz(out[1]) + src) / length
// DMI (Directional Movement Index)
_dmi (len, smooth) =>
up = change(high)
down = -change(low)
plusDM = na(up) ? na : (up > down and up > 0 ? up : 0)
minusDM = na(down) ? na : (down > up and down > 0 ? down : 0)
trur = _rma(tr, len)
plus = fixnan(100 * _rma(plusDM, len) / trur)
minus = fixnan(100 * _rma(minusDM, len) / trur)
sum = plus + minus
adx = 100 * _rma(abs(plus - minus) / (sum == 0 ? 1 : sum), smooth)
[plus, minus, adx]
[diplus, diminus, adx] = _dmi(FILTER, SMOOTH)
/////////
// MFI //
/////////
// common RSI function
_rsi(upper, lower) =>
if lower == 0
100
if upper == 0
0
100.0 - (100.0 / (1.0 + upper / lower))
mfiUp = sum(volume * (change(ohlc4) <= 0 ? 0 : ohlc4), FILTER)
mfiDown = sum(volume * (change(ohlc4) >= 0 ? 0 : ohlc4), FILTER)
mfi = _rsi(mfiUp, mfiDown)
////////////
// Filter //
////////////
longCondition = crossover(fastMA, slowMA)
shortCondition = crossunder(fastMA, slowMA)
if (longCondition or shortCondition)
_knnStore(adx, mfi, SRC)
filter = _knn(adx, mfi, KNN)
/////////////
// Actions //
/////////////
bgcolor(BACKGROUND ? filter >= 0 ? color.green : color.red : na)
plot(fastMA, color=color.red)
plot(slowMA, color=color.green)
if (longCondition and filter >= 0)
strategy.entry("Long", strategy.long)
if (shortCondition and filter < 0)
strategy.entry("Short", strategy.short)