Estrategia de trading multi-temporal basada en el indicador de compresión


Fecha de creación: 2024-02-27 17:40:03 Última modificación: 2024-02-27 17:40:03
Copiar: 0 Número de Visitas: 684
1
Seguir
1617
Seguidores

Estrategia de trading multi-temporal basada en el indicador de compresión

Descripción general

Esta estrategia combina tres indicadores: Boom Hunter, Hull Suite y Volatility Oscillator, para lograr una estrategia cuantitativa de seguimiento de tendencias y transacciones de ruptura en múltiples marcos de tiempo. La estrategia se aplica a activos digitales como Bitcoin con un alto nivel de volatilidad y situaciones de precios repentinas.

El principio

La lógica central de la estrategia se basa en los siguientes tres indicadores:

  1. El cazador de telas (Boom Hunter)Un oscilador que utiliza la compresión de indicadores para determinar las señales de compra y venta mediante el cruce de dos indicadores (Quotient1 y Quotient2).

  2. El conjunto Hull Suite: Un conjunto de indicadores de línea media móvil suave para juzgar la dirección de la tendencia a través de la relación entre la vía media y la vía ascendente y descendente.

  3. El oscilador de volatilidadEl índice de volatilidad es un indicador oscilante de la información de fluctuaciones de precios cuantitativas.

La lógica de entrada de esta estrategia es que, al mismo tiempo que los dos indicadores de Quotient de los cazadores de telas se cruzan hacia arriba o hacia abajo, el precio debe romper la órbita media de Hull y desviarse de la órbita superior o inferior, mientras que el indicador de fluctuación se encuentra en la zona de sobreventa. De esta manera, se pueden filtrar algunas falsas señales de ruptura y mejorar la precisión de la entrada.

El stop loss se establece mediante la búsqueda de un mínimo o máximo de un período determinado (la línea K de 20 por defecto), mientras que las ganancias se obtienen mediante el porcentaje de stop loss multiplicado por el porcentaje de stop loss de la configuración (el triple por defecto). Las posiciones se calculan en función del porcentaje de los activos totales de la cuenta (el 3% por defecto) y el margen de stop loss de un indicador específico.

Las ventajas

  • Utiliza la técnica de compresión de indicadores para extraer las principales señales de transacción en los precios y aumentar la probabilidad de obtener ganancias
  • Verificación combinada de múltiples indicadores para evitar falsas rupturas y determinar con precisión la dirección de la tendencia
  • Configuración de paradas de pérdidas dinámicas para el seguimiento de tendencias con riesgos controlables
  • La adopción de indicadores de volatilidad para garantizar la negociación en un entorno de alta volatilidad
  • Análisis de marcos de tiempo múltiples para mejorar la estabilidad de la estrategia

El riesgo

  • El indicador de los cazadores de telas podría estar comprimido, lo que generaría una señal errónea.
  • El paquete Hull se retrasará en el trayecto y no podrá rastrear los cambios en los precios en tiempo real.
  • Si la volatilidad baja, se pierden oportunidades de negociación o se generan pérdidas de liquidación.

La solución:

  1. Ajuste de los parámetros del indicador de compresión, equilibrar la sensibilidad del indicador
  2. Intentar usar promedios móviles de índices como EHMA en lugar de un indicador de trayectoria media
  3. Aumentar otros indicadores de juicio para evitar la volatilidad engañosa

Optimización

La estrategia puede ser optimizada en los siguientes aspectos:

  1. Optimización de parámetros: para obtener la mejor combinación de parámetros mediante la modificación de parámetros indicadores como la longitud de ciclo, el coeficiente de compresión, etc.

  2. Optimización del marco de tiempoPrueba diferentes períodos de tiempo (un minuto, cinco minutos, treinta minutos, etc.) para encontrar el ciclo de negociación más adecuado.

  3. Optimización de posiciones• Cambiar el tamaño y la proporción de las posiciones en cada transacción para encontrar el mejor uso de los fondos

  4. Optimización de pérdidasAjuste de la posición de stop loss para obtener la mejor relación de riesgo-rentabilidad de acuerdo con las diferentes operaciones

  5. Optimización de las condicionesAumentar o disminuir las condiciones de filtración de indicadores para obtener una hora de entrada más precisa

Resumir

Esta estrategia permite el seguimiento de la tendencia de las transacciones en un marco de tiempo múltiple a través de la combinación de los tres indicadores de los cazadores de telas, el kit de Hull y el oscilador de volatilidad. La estrategia es capaz de identificar el comportamiento repentino de los precios de manera efectiva y se aplica a activos digitales con alta volatilidad.

Código Fuente de la Estrategia
/*backtest
start: 2024-01-27 00:00:00
end: 2024-02-26 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// Strategy based on the 3 indicators:
//  - Boom Hunter Pro
//  - Hull Suite
//  - Volatility Oscillator
//
// Strategy was designed for the purpose of back testing. 
// See strategy documentation for info on trade entry logic.
// 
// Credits:
//  - Boom Hunter Pro: veryfid (https://www.tradingview.com/u/veryfid/)
//  - Hull Suite: InSilico (https://www.tradingview.com/u/InSilico/)
//  - Volatility Oscillator: veryfid (https://www.tradingview.com/u/veryfid/)

//@version=5
strategy("Boom Hunter + Hull Suite + Volatility Oscillator Strategy", overlay=false, initial_capital=1000, currency=currency.NONE, max_labels_count=500, default_qty_type=strategy.cash, commission_type=strategy.commission.percent, commission_value=0.01)

// =============================================================================
// STRATEGY INPUT SETTINGS
// =============================================================================

// ---------------
// Risk Management
// ---------------
swingLength = input.int(20, "Swing High/Low Lookback Length", group='Strategy: Risk Management', tooltip='Stop Loss is calculated by the swing high or low over the previous X candles')
accountRiskPercent = input.float(3, "Account percent loss per trade", step=0.1, group='Strategy: Risk Management', tooltip='Each trade will risk X% of the account balance')
profitFactor = input.float(3, "Profit Factor (R:R Ratio)", step = 0.1, group='Strategy: Risk Management')

// ----------
// Date Range
// ----------
start_year = input.int(title='Start Date', defval=2022, minval=2010, maxval=3000, group='Strategy: Date Range', inline='1')
start_month = input.int(title='', defval=1, group='Strategy: Date Range', inline='1', options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
start_date = input.int(title='', defval=1, group='Strategy: Date Range', inline='1', options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31])
end_year = input.int(title='End Date', defval=2023, minval=1800, maxval=3000, group='Strategy: Date Range', inline='2')
end_month = input.int(title='', defval=1, group='Strategy: Date Range', inline='2', options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
end_date = input.int(title='', defval=1, group='Strategy: Date Range', inline='2', options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31])
in_date_range = true

// =============================================================================
// INDICATORS
// =============================================================================

// ---------------
// Boom Hunter Pro
// ---------------
square = input.bool(true, title='Square Line?', group='Main Settings')
//Quotient
LPPeriod = input.int(6, title='Quotient | LPPeriod', inline='quotient', group='EOT 1 (Main Oscillator)')
K1 = input.int(0, title='K1', inline='quotient', group='EOT 1 (Main Oscillator)')
esize = 60  //, title = "Size", inline = "quotient2", group = "EOT 1 (Main Oscillator)")
ey = 50  //, title = "Y axis", inline = "quotient2", group = "EOT 1 (Main Oscillator)")
trigno = input.int(1, 'Trigger Length', group='EOT 1 (Main Oscillator)', inline='quotient2')
trigcol = input.color(color.white, title='Trigger Color:', group='EOT 1 (Main Oscillator)', inline='q2')

// EOT 2
//Inputs
LPPeriod2 = input.int(28, title='LPPeriod2', group='EOT 2 (Red Wave)', inline='q2')
K22 = input.float(0.3, title='K2', group='EOT 2 (Red Wave)', inline='q2')

//EOT 1
//Vars
alpha1 = 0.00
HP = 0.00
a1 = 0.00
b1 = 0.00
c1 = 0.00
c2 = 0.00
c3 = 0.00
Filt = 0.00
Peak = 0.00
X = 0.00
Quotient1 = 0.00
pi = 2 * math.asin(1)

//Highpass filter cyclic components
//whose periods are shorter than 100 bars
alpha1 := (math.cos(.707 * 2 * pi / 100) + math.sin(.707 * 2 * pi / 100) - 1) / math.cos(.707 * 2 * pi / 100)
HP := (1 - alpha1 / 2) * (1 - alpha1 / 2) * (close - 2 * nz(close[1]) + nz(close[2])) + 2 * (1 - alpha1) * nz(HP[1]) - (1 - alpha1) * (1 - alpha1) * nz(HP[2])

//SuperSmoother Filter
a1 := math.exp(-1.414 * pi / LPPeriod)
b1 := 2 * a1 * math.cos(1.414 * pi / LPPeriod)
c2 := b1
c3 := -a1 * a1
c1 := 1 - c2 - c3
Filt := c1 * (HP + nz(HP[1])) / 2 + c2 * nz(Filt[1]) + c3 * nz(Filt[2])

//Fast Attack - Slow Decay Algorithm
Peak := .991 * nz(Peak[1])
if math.abs(Filt) > Peak
    Peak := math.abs(Filt)
    Peak

//Normalized Roofing Filter
if Peak != 0
    X := Filt / Peak
    X

Quotient1 := (X + K1) / (K1 * X + 1)

// EOT 2
//Vars
alpha1222 = 0.00
HP2 = 0.00
a12 = 0.00
b12 = 0.00
c12 = 0.00
c22 = 0.00
c32 = 0.00
Filt2 = 0.00
Peak2 = 0.00
X2 = 0.00
Quotient4 = 0.00

alpha1222 := (math.cos(.707 * 2 * pi / 100) + math.sin(.707 * 2 * pi / 100) - 1) / math.cos(.707 * 2 * pi / 100)
HP2 := (1 - alpha1222 / 2) * (1 - alpha1222 / 2) * (close - 2 * nz(close[1]) + nz(close[2])) + 2 * (1 - alpha1222) * nz(HP2[1]) - (1 - alpha1222) * (1 - alpha1222) * nz(HP2[2])

//SuperSmoother Filter
a12 := math.exp(-1.414 * pi / LPPeriod2)
b12 := 2 * a12 * math.cos(1.414 * pi / LPPeriod2)
c22 := b12
c32 := -a12 * a12
c12 := 1 - c22 - c32
Filt2 := c12 * (HP2 + nz(HP2[1])) / 2 + c22 * nz(Filt2[1]) + c32 * nz(Filt2[2])

//Fast Attack - Slow Decay Algorithm
Peak2 := .991 * nz(Peak2[1])
if math.abs(Filt2) > Peak2
    Peak2 := math.abs(Filt2)
    Peak2

//Normalized Roofing Filter
if Peak2 != 0
    X2 := Filt2 / Peak2
    X2

Quotient4 := (X2 + K22) / (K22 * X2 + 1)
q4 = Quotient4 * esize + ey

//Plot EOT
q1 = Quotient1 * esize + ey
trigger = ta.sma(q1, trigno)
Plot3 = plot(trigger, color=trigcol, linewidth=2, title='Quotient 1')
Plot44 = plot(q4, color=color.new(color.red, 0), linewidth=2, title='Quotient 2')


// ----------
// HULL SUITE
// ----------

//INPUT
src = input(close, title='Source')
modeSwitch = input.string('Hma', title='Hull Variation', options=['Hma', 'Thma', 'Ehma'])
length = input(200, title='Length(180-200 for floating S/R , 55 for swing entry)')
lengthMult = input(2.4, title='Length multiplier (Used to view higher timeframes with straight band)')

useHtf = input(false, title='Show Hull MA from X timeframe? (good for scalping)')
htf = input.timeframe('240', title='Higher timeframe')

//FUNCTIONS
//HMA
HMA(_src, _length) =>
    ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length)))
//EHMA    
EHMA(_src, _length) =>
    ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length)))
//THMA    
THMA(_src, _length) =>
    ta.wma(ta.wma(_src, _length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length)

//SWITCH
Mode(modeSwitch, src, len) =>
    modeSwitch == 'Hma' ? HMA(src, len) : modeSwitch == 'Ehma' ? EHMA(src, len) : modeSwitch == 'Thma' ? THMA(src, len / 2) : na

//OUT
_hull = Mode(modeSwitch, src, int(length * lengthMult))
HULL = useHtf ? request.security(syminfo.ticker, htf, _hull) : _hull
MHULL = HULL[0]
SHULL = HULL[2]

//COLOR
hullColor = MHULL > SHULL ? color.green : color.red

//PLOT
///< Frame
Fi1 = plot(-10, title='MHULL', color=hullColor, linewidth=2)

// -----------------
// VOLUME OSCILLATOR
// -----------------

volLength = input(80)
spike = close - open
x = ta.stdev(spike, volLength)
y = ta.stdev(spike, volLength) * -1
volOscCol = spike > x ? color.green : spike < y ? color.red : color.gray
plot(-30, color=color.new(volOscCol, transp=0), linewidth=2)


// =============================================================================
// STRATEGY LOGIC
// =============================================================================

// Boom Hunter Pro entry conditions
boomLong = ta.crossover(trigger, q4)
boomShort = ta.crossunder(trigger, q4)

// Hull Suite entry conditions
hullLong = MHULL > SHULL and close > MHULL
hullShort = MHULL < SHULL and close < SHULL

// Volatility Oscillator entry conditions
volLong = spike > x
volShort = spike < y

inLong = strategy.position_size > 0
inShort = strategy.position_size < 0

longCondition = boomLong and hullLong and volLong and in_date_range
shortCondition = boomShort and hullShort and volShort and in_date_range

swingLow = ta.lowest(source=low, length=swingLength)
swingHigh = ta.highest(source=high, length=swingLength)

atr = ta.atr(14)
longSl = math.min(close - atr, swingLow)
shortSl = math.max(close + atr, swingHigh)

longStopPercent = math.abs((1 - (longSl / close)) * 100)
shortStopPercent = math.abs((1 - (shortSl / close)) * 100)

longTpPercent = longStopPercent * profitFactor
shortTpPercent = shortStopPercent * profitFactor
longTp = close + (close * (longTpPercent / 100))
shortTp = close - (close * (shortTpPercent / 100))

// Position sizing (default risk 3% per trade)
riskAmt = strategy.equity * accountRiskPercent / 100
longQty = math.abs(riskAmt / longStopPercent * 100) / close
shortQty = math.abs(riskAmt / shortStopPercent * 100) / close

if (longCondition and not inLong)
    strategy.entry("Long", strategy.long, qty=longQty)
    strategy.exit("Long  SL/TP", from_entry="Long", stop=longSl, limit=longTp, alert_message='Long SL Hit')
    buyLabel = label.new(x=bar_index, y=high[1], color=color.green, style=label.style_label_up)
    label.set_y(id=buyLabel, y=-40)
    label.set_tooltip(id=buyLabel, tooltip="Risk Amt: " + str.tostring(riskAmt) + " Qty: " + str.tostring(longQty) + " Swing low: " + str.tostring(swingLow) + " Stop Percent: " + str.tostring(longStopPercent) + " TP Percent: " + str.tostring(longTpPercent))

if (shortCondition and not inShort)
    strategy.entry("Short", strategy.short, qty=shortQty)
    strategy.exit("Short  SL/TP", from_entry="Short", stop=shortSl, limit=shortTp, alert_message='Short SL Hit')
    sellLabel = label.new(x=bar_index, y=high[1], color=color.red, style=label.style_label_up)
    label.set_y(id=sellLabel, y=-40)
    label.set_tooltip(id=sellLabel, tooltip="Risk Amt: " + str.tostring(riskAmt) + " Qty: " + str.tostring(shortQty) + " Swing high: " + str.tostring(swingHigh) + " Stop Percent: " + str.tostring(shortStopPercent) + " TP Percent: " + str.tostring(shortTpPercent))