Una estrategia de negociación de criptomonedas de alta frecuencia que combina el cruce de la media móvil TrippleMACD con el índice de fuerza relativa


Fecha de creación: 2024-03-22 15:41:46 Última modificación: 2024-03-22 15:41:46
Copiar: 0 Número de Visitas: 705
1
Seguir
1617
Seguidores

Una estrategia de negociación de criptomonedas de alta frecuencia que combina el cruce de la media móvil TrippleMACD con el índice de fuerza relativa

Descripción general

Este artículo presenta una estrategia de comercio de criptomonedas de alta frecuencia basada en el cruce de la línea media TripleMACD en combinación con un indicador relativamente débil ((RSI)). La estrategia utiliza indicadores MACD de tres grupos de diferentes parámetros y promedia sus líneas de señal, mientras que combina con el indicador RSI para determinar el mejor momento de compra y venta. La estrategia está diseñada para el comercio automatizado en un marco de tiempo de 1 minuto y solo considera el comercio de múltiples cabezas.

Principio de estrategia

El núcleo de la estrategia es el uso de tres conjuntos de indicadores MACD de diferentes parámetros para capturar señales de tendencia en diferentes escalas de tiempo. Mediante la media de las líneas de señales de los tres conjuntos de indicadores MACD, se puede suavizar el ruido de manera efectiva y proporcionar una señal de negociación más confiable.

Además, la estrategia también utiliza la regresión lineal para identificar la fase de liquidación del mercado. Se puede determinar si el mercado actual está en estado de liquidación calculando la proporción de las sombras y las entidades en el diagrama. Si la longitud de las sombras y las sombras es más del doble de la longitud de las entidades, se considera que el mercado está en la fase de liquidación, en este momento la estrategia evitará el comercio.

Análisis de las ventajas

  1. Análisis en múltiples escalas de tiempo: mediante el uso de tres conjuntos de indicadores MACD con diferentes parámetros, la estrategia puede capturar señales de tendencia en diferentes escalas de tiempo, lo que aumenta la precisión y la fiabilidad de las operaciones.

  2. Suavización de la señal: Se puede suavizar el ruido de manera efectiva mediante la mediación de las líneas de señal de los tres grupos de indicadores MACD, evitando la señal engañosa que un solo indicador podría generar.

  3. Confirmación de tendencias: la combinación de indicadores RSI para confirmar la fuerza de las tendencias de múltiples cabezas puede mejorar aún más la fiabilidad de las señales de negociación.

  4. Identificación de la consolidación: utiliza la regresión lineal para identificar la fase de consolidación del mercado, lo que evita el comercio en situaciones de crisis y reduce el riesgo de la estrategia.

  5. Comercio automatizado: La estrategia está diseñada para el comercio automatizado en el marco de tiempo de 1 minuto, para responder rápidamente a los cambios en el mercado y ejecutar operaciones, lo que aumenta la eficiencia de las operaciones.

Análisis de riesgos

  1. Optimización de parámetros: la estrategia involucra varios parámetros, como el ciclo de las líneas rápidas y lentas de los tres grupos de indicadores MACD, el ciclo de los indicadores RSI, etc. La elección de estos parámetros tiene un impacto importante en el rendimiento de la estrategia, y si los parámetros no se optimizan adecuadamente, puede causar una disminución en el rendimiento de la estrategia.

  2. Riesgo de sobreajuste: la estrategia puede funcionar bien en ciertos datos históricos, pero puede no adaptarse a los cambios en el mercado en la aplicación real, lo que hace que la estrategia no funcione.

  3. Incidentes de Black Swan: La estrategia se basa principalmente en indicadores técnicos y puede no responder a algunos eventos fundamentales importantes, lo que puede hacer que la estrategia no funcione bien en un entorno de mercado extremo.

Dirección de optimización

  1. Ajuste de parámetros dinámicos: los parámetros de la estrategia se ajustan dinámicamente según los cambios en las condiciones del mercado, como el ciclo de la línea rápida y lenta del indicador MACD, el ciclo del indicador RSI, etc., para adaptarse a diferentes circunstancias del mercado.

  2. Añadir más indicadores: Sobre la base de los indicadores MACD y RSI existentes, se puede considerar la adición de otros indicadores técnicos, como bandas de Brin, medias móviles, etc., para mejorar aún más la precisión y la fiabilidad de las señales de negociación.

  3. Optimización de la gestión de riesgos: incorporar mejores medidas de gestión de riesgos en la estrategia, como el stop loss dinámico, la gestión de posiciones, etc., para reducir el riesgo general de la estrategia.

  4. Optimización de aprendizaje automático: utiliza algoritmos de aprendizaje automático, como redes neuronales, máquinas de vectores de soporte, etc., para optimizar los parámetros de la estrategia y las reglas de negociación, mejorar la adaptabilidad y la robustez de la estrategia.

Resumir

Este artículo presenta una estrategia de comercio de criptomonedas de alta frecuencia basada en TrippleMACD que se combina con el indicador RSI. Esta estrategia utiliza tres conjuntos de diferentes parámetros del indicador MACD y el indicador RSI para generar señales de negociación confiables, mientras que utiliza la regresión lineal para identificar las fases de equilibrio del mercado y evitar el comercio en situaciones de crisis.

Código Fuente de la Estrategia
/*backtest
start: 2024-02-01 00:00:00
end: 2024-02-29 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
//indicator("Triplle",shorttitle="Triplle MACD", overlay=true, scale = scale.none)
//indicator("Triplle","TrippleMACD",true)
strategy(title="TrippleMACD", shorttitle="TrippleMACD + RSI strategy", format=format.price, precision=4, overlay=true)

// RSI 
ma(source, length, type) =>
    switch type
        "SMA" => ta.sma(source, length)
        "Bollinger Bands" => ta.sma(source, length)
        "EMA" => ta.ema(source, length)
        "SMMA (RMA)" => ta.rma(source, length)
        "WMA" => ta.wma(source, length)
        "VWMA" => ta.vwma(source, length)

rsiLengthInput = input.int(14, minval=1, title="RSI Length", group="RSI Settings")
rsiSourceInput = input.source(close, "Source", group="RSI Settings")
maTypeInput = input.string("SMA", title="MA Type", options=["SMA", "Bollinger Bands", "EMA", "SMMA (RMA)", "WMA", "VWMA"], group="MA Settings")
maLengthInput = input.int(14, title="MA Length", group="MA Settings")
bbMultInput = input.float(2.0, minval=0.001, maxval=50, title="BB StdDev", group="MA Settings")
showDivergence = input.bool(false, title="Show Divergence", group="RSI Settings")

up = ta.rma(math.max(ta.change(rsiSourceInput), 0), rsiLengthInput)
down = ta.rma(-math.min(ta.change(rsiSourceInput), 0), rsiLengthInput)
rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down))
rsiMA = ma(rsi, maLengthInput, maTypeInput)
isBB = maTypeInput == "Bollinger Bands"

//rsiPlot = plot(rsi, "RSI", color=#7E57C2)
//plot(rsiMA, "RSI-based MA", color=color.yellow)
//rsiUpperBand = hline(70, "RSI Upper Band", color=#787B86)
//midline = hline(50, "RSI Middle Band", color=color.new(#787B86, 50))
//rsiLowerBand = hline(30, "RSI Lower Band", color=#787B86)
//fill(rsiUpperBand, rsiLowerBand, color=color.rgb(126, 87, 194, 90), title="RSI Background Fill")
bbUpperBand = plot(isBB ? rsiMA + ta.stdev(rsi, maLengthInput) * bbMultInput : na, title = "Upper Bollinger Band", color=color.green)
bbLowerBand = plot(isBB ? rsiMA - ta.stdev(rsi, maLengthInput) * bbMultInput : na, title = "Lower Bollinger Band", color=color.green)
//fill(bbUpperBand, bbLowerBand, color= isBB ? color.new(color.green, 90) : na, title="Bollinger Bands Background Fill")

//midLinePlot = plot(50, color = na, editable = false, display = display.none)
//fill(rsiPlot, midLinePlot, 100, 70, top_color = color.new(color.green, 0), bottom_color = color.new(color.green, 100),  title = "Overbought Gradient Fill")
//fill(rsiPlot, midLinePlot, 30,  0,  top_color = color.new(color.red, 100), bottom_color = color.new(color.red, 0),      title = "Oversold Gradient Fill")

// Divergence
lookbackRight = 5
lookbackLeft = 5
rangeUpper = 60
rangeLower = 5
bearColor = color.red
bullColor = color.green
textColor = color.white
noneColor = color.new(color.white, 100)

plFound = na(ta.pivotlow(rsi, lookbackLeft, lookbackRight)) ? false : true
phFound = na(ta.pivothigh(rsi, lookbackLeft, lookbackRight)) ? false : true
_inRange(cond) =>
	bars = ta.barssince(cond == true)
	rangeLower <= bars and bars <= rangeUpper

//------------------------------------------------------------------------------
// Regular Bullish
// rsi: Higher Low

rsiHL = rsi[lookbackRight] > ta.valuewhen(plFound, rsi[lookbackRight], 1) and _inRange(plFound[1])

// Price: Lower Low

priceLL = low[lookbackRight] < ta.valuewhen(plFound, low[lookbackRight], 1)
bullCondAlert = priceLL and rsiHL and plFound
bullCond = showDivergence and bullCondAlert

// plot(
//      plFound ? rsi[lookbackRight] : na,
//      offset=-lookbackRight,
//      title="Regular Bullish",
//      linewidth=2,
//      color=(bullCond ? bullColor : noneColor)
//      )

// plotshape(
// 	 bullCond ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bullish Label",
// 	 text=" Bull ",
// 	 style=shape.labelup,
// 	 location=location.absolute,
// 	 color=bullColor,
// 	 textcolor=textColor
// 	 )

//------------------------------------------------------------------------------
// Regular Bearish
// rsi: Lower High

rsiLH = rsi[lookbackRight] < ta.valuewhen(phFound, rsi[lookbackRight], 1) and _inRange(phFound[1])

// Price: Higher High

priceHH = high[lookbackRight] > ta.valuewhen(phFound, high[lookbackRight], 1)

bearCondAlert = priceHH and rsiLH and phFound
bearCond = showDivergence and bearCondAlert

// plot(
// 	 phFound ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bearish",
// 	 linewidth=2,
// 	 color=(bearCond ? bearColor : noneColor)
// 	 )

// plotshape(
// 	 bearCond ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bearish Label",
// 	 text=" Bear ",
// 	 style=shape.labeldown,
// 	 location=location.absolute,
// 	 color=bearColor,
// 	 textcolor=textColor
// 	 )
// END RSI

// Getting inputs
stopLuse          = input(1.040)
fast_length = input(title = "Fast Length", defval = 5)
slow_length = input(title = "Slow Length", defval = 8)
fast_length2 = input(title = "Fast Length2", defval = 13)
slow_length2 = input(title = "Slow Length2", defval = 21)
fast_length3 = input(title = "Fast Length3", defval = 34)
slow_length3 = input(title = "Slow Length3", defval = 144)
fast_length4 = input(title = "Fast Length3", defval = 68)
slow_length4 = input(title = "Slow Length3", defval = 288)
src = input(title = "Source", defval = close)
signal_length2 = input.int(title="Signal Smoothing", minval = 1, maxval = 200, defval = 11)
signal_length = input.int(title = "Signal Smoothing",  minval = 1, maxval = 50, defval = 9)
sma_source = input.string(title = "Oscillator MA Type",  defval = "EMA", options = ["SMA", "EMA"])
sma_signal = input.string(title = "Signal Line MA Type", defval = "EMA", options = ["SMA", "EMA"])
// Calculating
fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length)
slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length)

fast_ma2 = sma_source == "SMA2" ? ta.sma(src, fast_length2) : ta.ema(src, fast_length2)
slow_ma2 = sma_source == "SMA2" ? ta.sma(src, slow_length2) : ta.ema(src, slow_length2)

fast_ma3 = sma_source == "SMA3" ? ta.sma(src, fast_length3) : ta.ema(src, fast_length3)
slow_ma3 = sma_source == "SMA3" ? ta.sma(src, slow_length3) : ta.ema(src, slow_length3)

fast_ma4 = sma_source == "SMA3" ? ta.sma(src, fast_length3) : ta.ema(src, fast_length3)
slow_ma4 = sma_source == "SMA3" ? ta.sma(src, slow_length3) : ta.ema(src, slow_length3)

macd = fast_ma - slow_ma
macd2 = fast_ma2 - slow_ma2
macd3 = fast_ma3 - slow_ma3
macd4 = fast_ma4 - slow_ma4

signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length)
signal2 = sma_signal == "SMA" ? ta.sma(macd2, signal_length) : ta.ema(macd2, signal_length)
signal3 = sma_signal == "SMA" ? ta.sma(macd3, signal_length) : ta.ema(macd3, signal_length)
signal4 = sma_signal == "SMA" ? ta.sma(macd4, signal_length) : ta.ema(macd4, signal_length)
//hist = (macd + macd2 + macd3)/1 - (signal + signal2 + signal3)/1
hist = (macd + macd2 + macd3 + macd4)/4 - (signal + signal2 + signal3 + signal4)/4
signal5 = (signal + signal2 + signal3)/3

sma_signal2 = input.bool(title="Simple MA (Signal Line)", defval=true)

lin_reg = input.bool(title="Lin Reg", defval=true)
linreg_length = input.int(title="Linear Regression Length", minval = 1, maxval = 200, defval = 11)

bopen = lin_reg ? ta.linreg(open, linreg_length, 0) : open
bhigh = lin_reg ? ta.linreg(high, linreg_length, 0) : high
blow = lin_reg ? ta.linreg(low, linreg_length, 0) : low
bclose = lin_reg ? ta.linreg(close, linreg_length, 0) : close

shadow = (bhigh - bclose) + (bopen - blow)
body = bclose - bopen
perc = (shadow/body)
cond2 = perc >=2 and bclose+bclose[1]/2 > bopen+bopen[1]/2

r = bopen < bclose

//signal5 = sma_signal2 ? ta.sma(bclose, signal_length) : ta.ema(bclose, signal_length)
plotcandle(r ? bopen : na, r ? bhigh : na, r ? blow: na, r ? bclose : na, title="LinReg Candles", color= color.green, wickcolor=color.green, bordercolor=color.green, editable= true)
plotcandle(r ? na : bopen, r ? na : bhigh, r ? na : blow, r ? na : bclose, title="LinReg Candles", color=color.red, wickcolor=color.red, bordercolor=color.red, editable= true)
//alertcondition(hist[1] >= 0 and hist < 0, title = 'Rising to falling', message = 'The MACD histogram switched from a rising to falling state')
//alertcondition(hist[1] <= 0 and hist > 0, title = 'Falling to rising', message = 'The MACD histogram switched from a falling to rising state')

green = hist >= 0 ? (hist[1] < hist ? "G" : "GL") : (hist[1] < hist ? "RL" : "R")
Buy = green == "G" and green[1] != "G" and green[1] != "GL" and bopen < bclose and rsi < 55.0 //and not cond2
//StopBuy = (green == "R" or green == "RL" or green == "RL") and bopen > bclose and bopen[1] < bclose[1]
StopBuy = bopen > bclose and bopen[1] < bclose[1] and (green == "G" or green == "GL" or green == "R") and bopen[2] < bclose[2] and bopen[3] < bclose[3]
hists = close[3] < close[2] and close[2] < close[1]
//Buy = green == "RL" and hist[0] > -0.07 and hist[0] < 0.00 and rsi < 55.0 and hists
//StopBuy = green == "GL" or green == "R"
alertcondition(Buy, "Long","Покупка в лонг")
alertcondition(StopBuy, "StopLong","Закрытие сделки")

//hline(0, "Zero Line", color = color.new(#787B86, 50))
plot(hist + (close - (close * 0.03)), title = "Histogram", style = plot.style_line, color = (hist >= 0 ? (hist[1] < hist ? #26A69A : #B2DFDB) : (hist[1] < hist ? #FFCDD2 : #FF5252)))
plotshape(Buy ? low : na, 'Buy', shape.labelup, location.belowbar , color=color.new(#0abe40, 50), size=size.small, offset=0)
plotshape(StopBuy ? low : na, 'Buy', shape.cross, location.abovebar , color=color.new(#be0a0a, 50), size=size.small, offset=0)
plot(macd4  + (close - (close * 0.01)),   title = "MACD",   color = #2962FF)
plot(signal5 + (close - (close * 0.01)), title = "Signal", color = #FF6D00)

plotchar(cond2 , char='↓', color = color.rgb(0, 230, 119), text = "-")

if (Buy)
    strategy.entry("long", strategy.long)

// if (startShortTrade)
//     strategy.entry("short", strategy.short)

profitTarget = strategy.position_avg_price * stopLuse
strategy.exit("Take Profit", "long", limit=profitTarget)
// strategy.exit("Take Profit", "short", limit=profitTarget)