
Esta estrategia es un sistema de negociación basado en promedios móviles ponderados por liquidez. Mide la liquidez del mercado monitoreando la relación entre las fluctuaciones de precios y el volumen de negociación y construye promedios móviles rápidos y lentos sobre esta base. Se genera una señal de compra cuando la línea rápida cruza por encima de la línea lenta, y se genera una señal de venta cuando cruza por debajo. La estrategia presta especial atención a los eventos de liquidez anormales y registra puntos de precios clave a través de matrices, proporcionando así oportunidades comerciales más precisas.
El núcleo de la estrategia es medir la liquidez del mercado a través de la relación entre el volumen de operaciones y el cambio de precios. Los pasos de implementación específicos son los siguientes:
Se trata de una estrategia innovadora que combina el análisis de liquidez con indicadores técnicos, optimizando el tradicional sistema de cruce de medias móviles mediante el seguimiento de anomalías de liquidez del mercado. Si bien funciona bien en entornos de mercado específicos, aún necesita mayor optimización para mejorar la estabilidad y la aplicabilidad. Se recomienda que los traders realicen pruebas suficientes antes del uso real y lo combinen con otros indicadores para construir un sistema de trading más completo.
/*backtest
start: 2019-12-23 08:00:00
end: 2025-01-16 00:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}]
*/
//Liquidity ignoring price location
//@version=6
strategy("Liquidity Weighted Moving Averages [AlgoAlpha]", overlay=true, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3)
// Inputs
outlierThreshold = input.int(10, "Outlier Threshold Length")
fastMovingAverageLength = input.int(50, "Fast MA Length")
slowMovingAverageLength = input.int(100, "Slow MA Length")
start_date = input(timestamp("2018-01-01 00:00"), title="Start Date")
end_date = input(timestamp("2069-12-31 23:59"), title="End Date")
// Define liquidity based on volume and price movement
priceMovementLiquidity = volume / math.abs(close - open)
// Calculate the boundary for liquidity to identify outliers
liquidityBoundary = ta.ema(priceMovementLiquidity, outlierThreshold) + ta.stdev(priceMovementLiquidity, outlierThreshold)
// Initialize an array to store liquidity values when they cross the boundary
var liquidityValues = array.new_float(5)
// Check if the liquidity crosses above the boundary and update the array
if ta.crossover(priceMovementLiquidity, liquidityBoundary)
array.insert(liquidityValues, 0, close)
if array.size(liquidityValues) > 5
array.pop(liquidityValues)
// Calculate the Exponential Moving Averages for the close price at the last liquidity crossover
fastEMA = ta.ema(array.size(liquidityValues) > 0 ? array.get(liquidityValues, 0) : na, fastMovingAverageLength)
slowEMA = ta.ema(array.size(liquidityValues) > 0 ? array.get(liquidityValues, 0) : na, slowMovingAverageLength)
// Trading Logic
in_date_range = true
buy_signal = ta.crossover(fastEMA, slowEMA) and in_date_range
sell_signal = ta.crossunder(fastEMA, slowEMA) and in_date_range
// Strategy Entry and Exit
if (buy_signal)
strategy.entry("Buy", strategy.long)
if (sell_signal)
strategy.close("Buy")
// Plotting
fastPlot = plot(fastEMA, color=fastEMA > slowEMA ? color.new(#00ffbb, 50) : color.new(#ff1100, 50), title="Fast EMA")
slowPlot = plot(slowEMA, color=fastEMA > slowEMA ? color.new(#00ffbb, 50) : color.new(#ff1100, 50), title="Slow EMA")
// Create a fill between the fast and slow EMA plots with appropriate color based on crossover
fill(fastPlot, slowPlot, fastEMA > slowEMA ? color.new(#00ffbb, 50) : color.new(#ff1100, 50))