avatar of 发明者量化-小小梦 发明者量化-小小梦
Suivre Messages privés
4
Suivre
1271
Abonnés

FMZ lance un moteur de backtesting local Python

Créé le: 2018-04-13 09:48:31, Mis à jour le: 2019-08-19 16:30:05
comments   95
hits   14346

FMZ lance un moteur de backtesting local Python

FMZ backtest engine python package FMZ est un moteur de rétroaction de la bibliothèque python support python2 and python3, support Windows, Linux, Mac Il est compatible avec les systèmes Windows, Linux et Mac OS.

install

Mise en place Entrez la commande suivante à la ligne de commande:

pip install https://github.com/fmzquant/backtest_python/archive/master.zip
  • Avis: Lors de l’installation d’un système Apple Mac, si des restrictions de sécurité sont imposées, il est nécessaire d’ajouter la commande sudo avant la commande pip, et l’ensemble de la commande d’installation nécessite l’entrée du mot de passe du système.

simple example

Des exemples simples

'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
'''
from fmz import *
task = VCtx(__doc__) # initialize backtest engine from __doc__
print exchange.GetAccount()
print exchange.GetTicker()
print task.Join() # print backtest result

The config string can be generated automatically by saving the backtest configuration in the strategy edit page. Les chaînes de configuration peuvent être générées automatiquement par des configurations de rétroaction enregistrées dans l’interface d’édition de stratégie

meta

documentation

Documentation de l’API: (c’est-à-dire la documentation de l’appel de fonctions telles que GetAccount dans l’exemple)

Le code Python est simple à comprendre:

'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
'''
from fmz import *                                                  # 引用 发明者量化 库
task = VCtx(__doc__) # initialize backtest engine from __doc__     # 调用 VCtx 函数 根据 __doc__初始化。
print exchange.GetAccount()                                        # 测试 GetAccount 函数,并打印 回测系统测试交易所账户信息
print exchange.GetTicker()                                         # 测试 GetTicker 函数,并打印 回测系统 行情信息
print task.Join() # print backtest result                          # 调用 初始化后的 task 对象 显示回测结果
  • doc
  是两个下划线。__doc__用来访问模块,类声明或者函数的声明中第一个未被赋值的字符串,
  可以是被""" ""","" "",' ',括起来的,作用就是把 代码中 '''backtest   ...  ''' 的回测配置信息  传入 VCtx 类构造函数构造对象。
  • ### Modifiez le code de test pour voir comment la fonction Log, GetTicker est appelée.
  # coding=UTF-8

  '''backtest
  start: 2018-02-19 00:00:00
  end: 2018-03-22 12:00:00
  period: 15m
  exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
  '''

  from fmz import *                                                # 引用 发明者量化 库
  task = VCtx(__doc__) # initialize backtest engine from __doc__     # 调用 VCtx 函数 根据 __doc__初始化。
  print exchange.GetAccount()                                        # 测试 GetAccount 函数,并打印 回测系统测试交易所账户信息
  Log("\n 调用Log")
  Log("调用 exchange.GetTicker() : ", exchange.GetTicker())
  print task.Join() # print backtest result                          # 调用 初始化后的 task 对象 显示回测结果
  • La sortie du code print exchange.GetAccount () affiche le contenu suivant:
  {'Balance': 3.0, 'Stocks': 0.0, 'FrozenBalance': 0.0, 'FrozenStocks': 0.0}
  • Log{“\n Appel au log}”, Log{“Appel à l’échange.GetTicker}: “, exchange.GetTicker}

Le contenu de la sortie dans la structure de données de sortie de print task.Join:

  {
      "Chart": {
          "Cfg": "",
          "Datas": []
      },
      "Elapsed": 42000000,
      "Finished": true,
      "Indicators": {},
      "LoadBytes": 441845,
      "LoadElapsed": 24000000,
      "LogsCount": 2,
      "Profit": 0.0,
      "ProfitLogs": [],
      "Progress": 100.0,
      "RuntimeLogs": [                                                  # 调用输出内容在此处
          [1, 1518969600200, 5, "", 0, 0.0, 0.0, "\n 调用Log", "", ""],
          [2, 1518969600400, 5, "", 0, 0.0, 0.0, "调用 exchange.GetTicker() :  {'Sell': 0.02113476, 'Volume': 519.6953, 'Buy': 0.02113474, 'Last': 0.02113475, 'High': 0.02113476, 'Time': 1518969600000L, 'Low': 0.02113474}", "", ""]
      ],
      "Snapshort": [{
          "Balance": 3.0,
          "BaseCurrency": "LTC",
          "Commission": 0.0,
          "FrozenBalance": 0.0,
          "FrozenStocks": 0.0,
          "Id": "OKEX",
          "QuoteCurrency": "BTC",
          "Stocks": 0.0,
          "Symbols": {
       	   "LTC_BTC_OKEX": {
       		   "Last": 0.01893785
       	   }
          },
          "TradeStatus": {}
      }],
      "Status": "",
      "Task": {
          "Args": null,
          "Exchanges": [{
       	   "Balance": 3,
       	   "BaseCurrency": "LTC",
       	   "BasePeriod": 300000,
       	   "BasePrecision": 4,
       	   "DepthDeep": 5,
       	   "FaultTolerant": 0,
       	   "FeeDenominator": 5,
       	   "FeeMaker": 75,
       	   "FeeMin": 0,
       	   "FeeTaker": 80,
       	   "Id": "OKEX",
       	   "Label": "OKEX",
       	   "PriceTick": 1e-08,
       	   "QuoteCurrency": "BTC",
       	   "QuotePrecision": 8,
       	   "SlipPoint": 0,
       	   "Stocks": 0
          }],
          "Options": {
       	   "DataServer": "q.botvs.net",
       	   "MaxChartLogs": 800,
       	   "MaxProfitLogs": 800,
       	   "MaxRuntimeLogs": 800,
       	   "NetDelay": 200,
       	   "Period": 900000,
       	   "RetFlags": 189,
       	   "SnapshortPeriod": 300000,
       	   "TimeBegin": 1518969600,
       	   "TimeEnd": 1521691200,
       	   "UpdatePeriod": 5000
          }
      },
      "TaskStatus": 1,
      "Time": 1521691200000
  }
  • ### Comment utiliser une stratégie de rétroaction dans un moteur de rétroaction local
# !/usr/local/bin/python
# -*- coding: UTF-8 -*-
'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"Bitfinex","currency":"BTC_USD","balance":10000,"stocks":3}]
'''
import sys
sys.path.append("/usr/local/lib/python2.7/site-packages")    # 测试时添加了路径,如不需要可以删除

from fmz import *
import math
import talib

task = VCtx(__doc__) # initialize backtest engine from __doc__

# ------------------------------ 策略部分开始 --------------------------
print exchange.GetAccount()     # 调用一些接口,打印其返回值。
print exchange.GetTicker()

def adjustFloat(v):             # 策略中自定义的函数
    v = math.floor(v * 1000)
    return v / 1000

def onTick(e):
    Log("onTick")
    # ....

#
# ...
# 
# 此处省略 自定义函数实现等代码。

def main():
    InitAccount = GetAccount()
    
    while True:
        onTick(exchange)
        Sleep(1000)
# ------------------------------ 策略部分结束 --------------------------

try:
    main()                     # 回测结束时会 raise EOFError() 抛出异常,来停止回测的循环。所以要对这个异常处理,在检测到抛出的异常后调用 task.Join() 打印回测结果。
except:
    print task.Join()          # print backtest result  , 打印回测结果。