Stratégie de réseau neuronal à double axe temporel


Date de création: 2023-09-14 16:10:26 Dernière modification: 2023-09-14 16:10:26
Copier: 0 Nombre de clics: 735
1
Suivre
1617
Abonnés

Principe de stratégie

Cette stratégie utilise des modèles de prévision de réseaux neuronaux pour juger de la tendance des prix dans les deux périodes et pour effectuer des transactions en synchronisation des signaux sur les deux axes du temps.

La logique est la suivante:

  1. Obtenir deux variations de prix sur des axes de temps distincts, par exemple le jour et l’heure

  2. Entraîner les variations de prix dans un réseau de neurones pour obtenir une sortie de prévision pour chaque axe

  3. Lorsque les deux axes prédisent une sortie dans la même direction, c’est-à-dire au-delà de la barre, un signal de transaction est généré

  4. Plus d’opérations sont effectuées avec les prévisions horaires.

  5. Prévision de la ligne du jour pour faire une courte pause, prévision de la courte pause d’une heure pour faire une courte pause

  6. Si les deux axes ne s’accordent pas, la position est nulle.

Cette stratégie exploite pleinement l’information sur les deux axes du temps, détermine la direction de la tendance sur plusieurs dimensions, puis effectue des transactions, ce qui réduit efficacement les faux signaux.

Avantages stratégiques

  • Prévisions sur deux axes de temps pour une meilleure précision de jugement

  • Les réseaux neuronaux modélisent des données complexes

  • Évitez d’être piégé

Risque stratégique

  • La formation des réseaux nécessite de grandes quantités de données

  • La conception de la structure du réseau nécessite des tests répétés

  • Les signaux de combinaison de deux axes sont moins fréquents

Résumer

Cette stratégie utilise un réseau de neurones pour juger des tendances de prix à partir de deux axes temporels et effectuer des transactions en s’assurant de l’exactitude du jugement. Cependant, elle nécessite l’optimisation des paramètres du réseau et la définition d’une fréquence de transaction raisonnable.

Code source de la stratégie
/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 3h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=2
strategy("ANN 2 signals", overlay=false, precision=4, calc_on_every_tick=true)

threshold = input(title="Threshold", type=float, defval=0.006, step=0.001)
largeTimeframe = input(title="Large timeframe",  defval='D')
smallTimeframe = input(title="Small timeframe",  defval='60')

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) => 
    (exp(v) - exp(-v))/(exp(v) + exp(-v))

ANN(input) =>
    l0_0 = PineActivationFunctionLinear(input)
    l0_1 = PineActivationFunctionLinear(input)
    l0_2 = PineActivationFunctionLinear(input)
    l0_3 = PineActivationFunctionLinear(input)
    l0_4 = PineActivationFunctionLinear(input)
    l0_5 = PineActivationFunctionLinear(input)
    l0_6 = PineActivationFunctionLinear(input)
    l0_7 = PineActivationFunctionLinear(input)
    l0_8 = PineActivationFunctionLinear(input)
    l0_9 = PineActivationFunctionLinear(input)
    l0_10 = PineActivationFunctionLinear(input)
    l0_11 = PineActivationFunctionLinear(input)
    l0_12 = PineActivationFunctionLinear(input)
    l0_13 = PineActivationFunctionLinear(input)
    l0_14 = PineActivationFunctionLinear(input)
 
    l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
    l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
    l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
    l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
    l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
    l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
    l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487 + l0_9*1.1994484991 + l0_10*-0.9879081404 + l0_11*-0.3564970612 + l0_12*1.5814717823 + l0_13*-0.9614804676 + l0_14*0.9204822346)
    l1_7 = PineActivationFunctionTanh(l0_0*-4.2700957175 + l0_1*9.4328591157 + l0_2*-4.3045548 + l0_3*5.0616868842 + l0_4*3.3388781058 + l0_5*-2.1885073225 + l0_6*-6.506301518 + l0_7*3.8429000108 + l0_8*-1.6872237349 + l0_9*2.4107095799 + l0_10*-3.0873985314 + l0_11*-2.8358325447 + l0_12*2.4044366491 + l0_13*0.636779082 + l0_14*-13.2173215035)
    l1_8 = PineActivationFunctionTanh(l0_0*-8.3224697492 + l0_1*-9.4825530183 + l0_2*3.5294389835 + l0_3*0.1538618049 + l0_4*-13.5388631898 + l0_5*-0.1187936017 + l0_6*-8.4582741139 + l0_7*5.1566299292 + l0_8*10.345519938 + l0_9*2.9211759333 + l0_10*-5.0471804233 + l0_11*4.9255989983 + l0_12*-9.9626142544 + l0_13*23.0043143258 + l0_14*20.9391809343)
    l1_9 = PineActivationFunctionTanh(l0_0*-0.9120518654 + l0_1*0.4991807488 + l0_2*-1.877244586 + l0_3*3.1416466525 + l0_4*1.063709676 + l0_5*0.5210126835 + l0_6*-4.9755780108 + l0_7*2.0336532347 + l0_8*-1.1793121093 + l0_9*-0.730664855 + l0_10*-2.3515987428 + l0_11*-0.1916546514 + l0_12*-2.2530340504 + l0_13*-0.2331829119 + l0_14*0.7216218149)
    l1_10 = PineActivationFunctionTanh(l0_0*-5.2139618683 + l0_1*1.0663790028 + l0_2*1.8340834959 + l0_3*1.6248173447 + l0_4*-0.7663740145 + l0_5*0.1062788171 + l0_6*2.5288021501 + l0_7*-3.4066549066 + l0_8*-4.9497988755 + l0_9*-2.3060668143 + l0_10*-1.3962486274 + l0_11*0.6185583427 + l0_12*0.2625299576 + l0_13*2.0270246444 + l0_14*0.6372015811)
    l1_11 = PineActivationFunctionTanh(l0_0*0.2020072665 + l0_1*0.3885852709 + l0_2*-0.1830248843 + l0_3*-1.2408598444 + l0_4*-0.6365798088 + l0_5*1.8736534268 + l0_6*0.656206442 + l0_7*-0.2987482678 + l0_8*-0.2017485963 + l0_9*-1.0604095303 + l0_10*0.239793356 + l0_11*-0.3614172938 + l0_12*0.2614678044 + l0_13*1.0083551762 + l0_14*-0.5473833797)
    l1_12 = PineActivationFunctionTanh(l0_0*-0.4367517149 + l0_1*-10.0601304934 + l0_2*1.9240604838 + l0_3*-1.3192184047 + l0_4*-0.4564760159 + l0_5*-0.2965270368 + l0_6*-1.1407423613 + l0_7*2.0949647291 + l0_8*-5.8212599297 + l0_9*-1.3393321939 + l0_10*7.6624548265 + l0_11*1.1309391851 + l0_12*-0.141798054 + l0_13*5.1416736187 + l0_14*-1.8142503125)
    l1_13 = PineActivationFunctionTanh(l0_0*1.103948336 + l0_1*-1.4592033032 + l0_2*0.6146278432 + l0_3*0.5040966421 + l0_4*-2.4276090772 + l0_5*-0.0432902426 + l0_6*-0.0044259999 + l0_7*-0.5961347308 + l0_8*0.3821026107 + l0_9*0.6169102373 +l0_10*-0.1469847611 + l0_11*-0.0717167683 + l0_12*-0.0352403695 + l0_13*1.2481310788 + l0_14*0.1339628411)
    l1_14 = PineActivationFunctionTanh(l0_0*-9.8049980534 + l0_1*13.5481068519 + l0_2*-17.1362809025 + l0_3*0.7142100864 + l0_4*4.4759163422 + l0_5*4.5716161777 + l0_6*1.4290884628 + l0_7*8.3952862712 + l0_8*-7.1613700432 + l0_9*-3.3249489518+ l0_10*-0.7789587912 + l0_11*-1.7987628873 + l0_12*13.364752545 + l0_13*5.3947219678 + l0_14*12.5267547127)
    l1_15 = PineActivationFunctionTanh(l0_0*0.9869461803 + l0_1*1.9473351905 + l0_2*2.032925759 + l0_3*7.4092080633 + l0_4*-1.9257741399 + l0_5*1.8153585328 + l0_6*1.1427866392 + l0_7*-0.3723167449 + l0_8*5.0009927384 + l0_9*-0.2275103411 + l0_10*2.8823012914 + l0_11*-3.0633141934 + l0_12*-2.785334815 + l0_13*2.727981E-4 + l0_14*-0.1253009512)
    l1_16 = PineActivationFunctionTanh(l0_0*4.9418118585 + l0_1*-2.7538199876 + l0_2*-16.9887588104 + l0_3*8.8734475297 + l0_4*-16.3022734814 + l0_5*-4.562496601 + l0_6*-1.2944373699 + l0_7*-9.6022946986 + l0_8*-1.018393866 + l0_9*-11.4094515429 + l0_10*24.8483091382 + l0_11*-3.0031522277 + l0_12*0.1513114555 + l0_13*-6.7170487021 + l0_14*-14.7759227576)
    l1_17 = PineActivationFunctionTanh(l0_0*5.5931454656 + l0_1*2.22272078 + l0_2*2.603416897 + l0_3*1.2661196599 + l0_4*-2.842826446 + l0_5*-7.9386099121 + l0_6*2.8278849111 + l0_7*-1.2289445238 + l0_8*4.571484248 + l0_9*0.9447425595 + l0_10*4.2890688351 + l0_11*-3.3228258483 + l0_12*4.8866215526 + l0_13*1.0693412194 + l0_14*-1.963203112)
    l1_18 = PineActivationFunctionTanh(l0_0*0.2705520264 + l0_1*0.4002328199 + l0_2*0.1592515845 + l0_3*0.371893552 + l0_4*-1.6639467871 + l0_5*2.2887318884 + l0_6*-0.148633664 + l0_7*-0.6517792263 + l0_8*-0.0993032992 + l0_9*-0.964940376 + l0_10*0.1286342935 + l0_11*0.4869943595 + l0_12*1.4498648166 + l0_13*-0.3257333384 + l0_14*-1.3496419812)
    l1_19 = PineActivationFunctionTanh(l0_0*-1.3223200798 + l0_1*-2.2505204324 + l0_2*0.8142804525 + l0_3*-0.848348177 + l0_4*0.7208860589 + l0_5*1.2033423756 + l0_6*-0.1403005786 + l0_7*0.2995941644 + l0_8*-1.1440473062 + l0_9*1.067752916 + l0_10*-1.2990534679 + l0_11*1.2588583869 + l0_12*0.7670409455 + l0_13*2.7895972983 + l0_14*-0.5376152512)
    l1_20 = PineActivationFunctionTanh(l0_0*0.7382351572 + l0_1*-0.8778865631 + l0_2*1.0950766363 + l0_3*0.7312146997 + l0_4*2.844781386 + l0_5*2.4526730903 + l0_6*-1.9175165077 + l0_7*-0.7443755288 + l0_8*-3.1591419438 + l0_9*0.8441602697 + l0_10*1.1979484448 + l0_11*2.138098544 + l0_12*0.9274159536 + l0_13*-2.1573448803 + l0_14*-3.7698356464)
    l1_21 = PineActivationFunctionTanh(l0_0*5.187120117 + l0_1*-7.7525670576 + l0_2*1.9008346975 + l0_3*-1.2031603996 + l0_4*5.917669142 + l0_5*-3.1878682719 + l0_6*1.0311747828 + l0_7*-2.7529484612 + l0_8*-1.1165884578 + l0_9*2.5524942323 + l0_10*-0.38623241 + l0_11*3.7961317445 + l0_12*-6.128820883 + l0_13*-2.1470707709 + l0_14*2.0173792965)
    l1_22 = PineActivationFunctionTanh(l0_0*-6.0241676562 + l0_1*0.7474455584 + l0_2*1.7435724844 + l0_3*0.8619835076 + l0_4*-0.1138406797 + l0_5*6.5979359352 + l0_6*1.6554154348 + l0_7*-3.7969458806 + l0_8*1.1139097376 + l0_9*-1.9588417 + l0_10*3.5123392221 + l0_11*9.4443103128 + l0_12*-7.4779291395 + l0_13*3.6975940671 + l0_14*8.5134262747)
    l1_23 = PineActivationFunctionTanh(l0_0*-7.5486576471 + l0_1*-0.0281420865 + l0_2*-3.8586839454 + l0_3*-0.5648792233 + l0_4*-7.3927282026 + l0_5*-0.3857538046 + l0_6*-2.9779885698 + l0_7*4.0482279965 + l0_8*-1.1522499578 + l0_9*-4.1562500212 + l0_10*0.7813134307 + l0_11*-1.7582667612 + l0_12*1.7071109988 + l0_13*6.9270873208 + l0_14*-4.5871357362)
    l1_24 = PineActivationFunctionTanh(l0_0*-5.3603442228 + l0_1*-9.5350611629 + l0_2*1.6749984422 + l0_3*-0.6511065892 + l0_4*-0.8424823239 + l0_5*1.9946675213 + l0_6*-1.1264361638 + l0_7*0.3228676616 + l0_8*5.3562230396 + l0_9*-1.6678168952+ l0_10*1.2612580068 + l0_11*-3.5362671399 + l0_12*-9.3895191366 + l0_13*2.0169228673 + l0_14*-3.3813191557)
    l1_25 = PineActivationFunctionTanh(l0_0*1.1362866429 + l0_1*-1.8960071702 + l0_2*5.7047307243 + l0_3*-1.6049785053 + l0_4*-4.8353898931 + l0_5*-1.4865381145 + l0_6*-0.2846893475 + l0_7*2.2322095997 + l0_8*2.0930488668 + l0_9*1.7141411002 + l0_10*-3.4106032176 + l0_11*3.0593289612 + l0_12*-5.0894813904 + l0_13*-0.5316299133 + l0_14*0.4705265416)
    l1_26 = PineActivationFunctionTanh(l0_0*-0.9401400975 + l0_1*-0.9136086957 + l0_2*-3.3808688582 + l0_3*4.7200776773 + l0_4*3.686296919 + l0_5*14.2133723935 + l0_6*1.5652940954 + l0_7*-0.2921139433 + l0_8*1.0244504511 + l0_9*-7.6918299134 + l0_10*-0.594936135 + l0_11*-1.4559914156 + l0_12*2.8056435224 + l0_13*2.6103905733 + l0_14*2.3412348872)
    l1_27 = PineActivationFunctionTanh(l0_0*1.1573980186 + l0_1*2.9593661909 + l0_2*0.4512594325 + l0_3*-0.9357210858 + l0_4*-1.2445804495 + l0_5*4.2716471631 + l0_6*1.5167912375 + l0_7*1.5026853293 + l0_8*1.3574772038 + l0_9*-1.9754386842 + l0_10*6.727671436 + l0_11*8.0145772889 + l0_12*7.3108970663 + l0_13*-2.5005627841 + l0_14*8.9604502277)
    l1_28 = PineActivationFunctionTanh(l0_0*6.3576350212 + l0_1*-2.9731672725 + l0_2*-2.7763558082 + l0_3*-3.7902984555 + l0_4*-1.0065574585 + l0_5*-0.7011836061 + l0_6*-1.0298068578 + l0_7*1.201007784 + l0_8*-0.7835862254 + l0_9*-3.9863597435 + l0_10*6.7851825502 + l0_11*1.1120256721 + l0_12*-2.263287351 + l0_13*1.8314374104 + l0_14*-2.279102097)
    l1_29 = PineActivationFunctionTanh(l0_0*-7.8741911036 + l0_1*-5.3370618518 + l0_2*11.9153868964 + l0_3*-4.1237170553 + l0_4*2.9491152758 + l0_5*1.0317132502 + l0_6*2.2992199883 + l0_7*-2.0250502364 + l0_8*-11.0785995839 + l0_9*-6.3615588554 + l0_10*-1.1687644976 + l0_11*6.3323478015 + l0_12*6.0195076962 + l0_13*-2.8972208702 + l0_14*3.6107747183)
 
    l2_0 = PineActivationFunctionTanh(l1_0*-0.590546797 + l1_1*0.6608304658 + l1_2*-0.3358268839 + l1_3*-0.748530283 + l1_4*-0.333460383 + l1_5*-0.3409307681 + l1_6*0.1916558198 + l1_7*-0.1200399453 + l1_8*-0.5166151854 + l1_9*-0.8537164676 +l1_10*-0.0214448647 + l1_11*-0.553290271 + l1_12*-1.2333302892 + l1_13*-0.8321813811 + l1_14*-0.4527761741 + l1_15*0.9012545631 + l1_16*0.415853215 + l1_17*0.1270548319 + l1_18*0.2000460279 + l1_19*-0.1741942671 + l1_20*0.419830522 + l1_21*-0.059839291 + l1_22*-0.3383001769 + l1_23*0.1617814073 + l1_24*0.3071848006 + l1_25*-0.3191182045 + l1_26*-0.4981831822 + l1_27*-1.467478375 + l1_28*-0.1676432563 + l1_29*1.2574849126)
    l2_1 = PineActivationFunctionTanh(l1_0*-0.5514235841 + l1_1*0.4759190049 + l1_2*0.2103576983 + l1_3*-0.4754377924 + l1_4*-0.2362941295 + l1_5*0.1155082119 + l1_6*0.7424215794 + l1_7*-0.3674198672 + l1_8*0.8401574461 + l1_9*0.6096563193 + l1_10*0.7437935674 + l1_11*-0.4898638101 + l1_12*-0.4168668092 + l1_13*-0.0365111095 + l1_14*-0.342675224 + l1_15*0.1870268765 + l1_16*-0.5843050987 + l1_17*-0.4596547471 + l1_18*0.452188522 + l1_19*-0.6737126684 + l1_20*0.6876072741 + l1_21*-0.8067776704 + l1_22*0.7592979467 + l1_23*-0.0768239468 + l1_24*0.370536097 + l1_25*-0.4363884671 + l1_26*-0.419285676 + l1_27*0.4380251141 + l1_28*0.0822528948 + l1_29*-0.2333910809)
    l2_2 = PineActivationFunctionTanh(l1_0*-0.3306539521 + l1_1*-0.9382247194 + l1_2*0.0746711276 + l1_3*-0.3383838985 + l1_4*-0.0683232217 + l1_5*-0.2112358049 + l1_6*-0.9079234054 + l1_7*0.4898595603 + l1_8*-0.2039825863 + l1_9*1.0870698641+ l1_10*-1.1752901237 + l1_11*1.1406403923 + l1_12*-0.6779626786 + l1_13*0.4281048906 + l1_14*-0.6327670055 + l1_15*-0.1477678844 + l1_16*0.2693637584 + l1_17*0.7250738509 + l1_18*0.7905904504 + l1_19*-1.6417250883 + l1_20*-0.2108095534 +l1_21*-0.2698557472 + l1_22*-0.2433656685 + l1_23*-0.6289943273 + l1_24*0.436428207 + l1_25*-0.8243825184 + l1_26*-0.8583496686 + l1_27*0.0983131026 + l1_28*-0.4107462518 + l1_29*0.5641683087)
    l2_3 = PineActivationFunctionTanh(l1_0*1.7036869992 + l1_1*-0.6683507666 + l1_2*0.2589197112 + l1_3*0.032841148 + l1_4*-0.4454796342 + l1_5*-0.6196149423 + l1_6*-0.1073622976 + l1_7*-0.1926393101 + l1_8*1.5280232458 + l1_9*-0.6136527036 +l1_10*-1.2722934357 + l1_11*0.2888655811 + l1_12*-1.4338638512 + l1_13*-1.1903556863 + l1_14*-1.7659663905 + l1_15*0.3703086867 + l1_16*1.0409140889 + l1_17*0.0167382209 + l1_18*0.6045646461 + l1_19*4.2388788116 + l1_20*1.4399738234 + l1_21*0.3308571935 + l1_22*1.4501137667 + l1_23*0.0426123724 + l1_24*-0.708479795 + l1_25*-1.2100800732 + l1_26*-0.5536278651 + l1_27*1.3547250573 + l1_28*1.2906250286 + l1_29*0.0596007114)
    l2_4 = PineActivationFunctionTanh(l1_0*-0.462165126 + l1_1*-1.0996742176 + l1_2*1.0928262999 + l1_3*1.806407067 + l1_4*0.9289147669 + l1_5*0.8069022793 + l1_6*0.2374237802 + l1_7*-2.7143979019 + l1_8*-2.7779203877 + l1_9*0.214383903 + l1_10*-1.3111536623 + l1_11*-2.3148813568 + l1_12*-2.4755355804 + l1_13*-0.6819733236 + l1_14*0.4425615226 + l1_15*-0.1298218043 + l1_16*-1.1744832824 + l1_17*-0.395194848 + l1_18*-0.2803397703 + l1_19*-0.4505071197 + l1_20*-0.8934956598 + l1_21*3.3232916348 + l1_22*-1.7359534851 + l1_23*3.8540421743 + l1_24*1.4424032523 + l1_25*0.2639823693 + l1_26*0.3597053634 + l1_27*-1.0470693728 + l1_28*1.4133480357 + l1_29*0.6248098695)
    l2_5 = PineActivationFunctionTanh(l1_0*0.2215807411 + l1_1*-0.5628295071 + l1_2*-0.8795982905 + l1_3*0.9101585104 + l1_4*-1.0176831976 + l1_5*-0.0728884401 + l1_6*0.6676331658 + l1_7*-0.7342174108 + l1_8*9.4428E-4 + l1_9*0.6439774272 + l1_10*-0.0345236026 + l1_11*0.5830977027 + l1_12*-0.4058921837 + l1_13*-0.3991888077 + l1_14*-1.0090426973 + l1_15*-0.9324780698 + l1_16*-0.0888749165 + l1_17*0.2466351736 + l1_18*0.4993304601 + l1_19*-1.115408696 + l1_20*0.9914246705 + l1_21*0.9687743445 + l1_22*0.1117130875 + l1_23*0.7825109733 + l1_24*0.2217023612 + l1_25*0.3081256411 + l1_26*-0.1778007966 + l1_27*-0.3333287743 + l1_28*1.0156352461 + l1_29*-0.1456257813)
    l2_6 = PineActivationFunctionTanh(l1_0*-0.5461783383 + l1_1*0.3246015999 + l1_2*0.1450605434 + l1_3*-1.3179944349 + l1_4*-1.5481775261 + l1_5*-0.679685633 + l1_6*-0.9462335139 + l1_7*-0.6462399371 + l1_8*0.0991658683 + l1_9*0.1612892194 +l1_10*-1.037660602 + l1_11*-0.1044778824 + l1_12*0.8309203243 + l1_13*0.7714766458 + l1_14*0.2566767663 + l1_15*0.8649416329 + l1_16*-0.5847461285 + l1_17*-0.6393969272 + l1_18*0.8014049359 + l1_19*0.2279568228 + l1_20*1.0565217821 + l1_21*0.134738029 + l1_22*0.3420395576 + l1_23*-0.2417397219 + l1_24*0.3083072038 + l1_25*0.6761739059 + l1_26*-0.4653817053 + l1_27*-1.0634057566 + l1_28*-0.5658892281 + l1_29*-0.6947283681)
    l2_7 = PineActivationFunctionTanh(l1_0*-0.5450410944 + l1_1*0.3912849372 + l1_2*-0.4118641117 + l1_3*0.7124695074 + l1_4*-0.7510266122 + l1_5*1.4065673913 + l1_6*0.9870731545 + l1_7*-0.2609363107 + l1_8*-0.3583639958 + l1_9*0.5436375706 +l1_10*0.4572450099 + l1_11*-0.4651538878 + l1_12*-0.2180218212 + l1_13*0.5241262959 + l1_14*-0.8529323253 + l1_15*-0.4200378937 + l1_16*0.4997885721 + l1_17*-1.1121528189 + l1_18*0.5992411048 + l1_19*-1.0263270781 + l1_20*-1.725160642 + l1_21*-0.2653995722 + l1_22*0.6996703032 + l1_23*0.348549086 + l1_24*0.6522482482 + l1_25*-0.7931928436 + l1_26*-0.5107994359 + l1_27*0.0509642698 + l1_28*0.8711187423 + l1_29*0.8999449627)
    l2_8 = PineActivationFunctionTanh(l1_0*-0.7111081522 + l1_1*0.4296245062 + l1_2*-2.0720732038 + l1_3*-0.4071818684 + l1_4*1.0632721681 + l1_5*0.8463224325 + l1_6*-0.6083948423 + l1_7*1.1827669608 + l1_8*-0.9572307844 + l1_9*-0.9080517673 + l1_10*-0.0479029057 + l1_11*-1.1452853213 + l1_12*0.2884352688 + l1_13*0.1767851586 + l1_14*-1.089314461 + l1_15*1.2991763966 + l1_16*1.6236630806 + l1_17*-0.7720263697 + l1_18*-0.5011541755 + l1_19*-2.3919413568 + l1_20*0.0084018338 + l1_21*0.9975216139 + l1_22*0.4193541029 + l1_23*1.4623834571 + l1_24*-0.6253069691 + l1_25*0.6119677341 + l1_26*0.5423948388 + l1_27*1.0022450377 + l1_28*-1.2392984069 + l1_29*1.5021529822)
 
    l3_0 = PineActivationFunctionTanh(l2_0*0.3385061186 + l2_1*0.6218531956 + l2_2*-0.7790340983 + l2_3*0.1413078332 + l2_4*0.1857010624 + l2_5*-0.1769456351 + l2_6*-0.3242337911 + l2_7*-0.503944883 + l2_8*0.1540568869)
 
entryYesterday = security(syminfo.tickerid, largeTimeframe, ohlc4[2])
entryToday = security(syminfo.tickerid, largeTimeframe, ohlc4[1])
entry = (entryToday-entryYesterday)/entryYesterday
exitYesterday = security(syminfo.tickerid, smallTimeframe, ohlc4[2])
exitToday = security(syminfo.tickerid, smallTimeframe, ohlc4[1])
exit = (exitToday-exitYesterday)/exitYesterday

exitPrediction = ANN(exit)
entryPrediction = ANN(entry)
goLong = entryPrediction < -threshold and exitPrediction < -threshold
goShort = entryPrediction > threshold and exitPrediction > threshold
 
strategy.close("LONG", exitPrediction >= threshold or entryPrediction >= threshold)
strategy.close("SHORT", exitPrediction <= -threshold or entryPrediction <= threshold)

strategy.entry("LONG", strategy.long, when = goLong)
strategy.entry("SHORT", strategy.short, when = goShort) 

plot(entryPrediction, color=blue)
plot(exitPrediction, color=yellow)

bgcolor(goLong ? green : goShort ? red : gray, transp=20)