Stratégie de moyenne mobile lissée stochastique Momentum


Date de création: 2023-12-19 11:41:40 Dernière modification: 2023-12-19 11:41:40
Copier: 0 Nombre de clics: 661
1
Suivre
1621
Abonnés

Stratégie de moyenne mobile lissée stochastique Momentum

Aperçu

Cette stratégie combine une moyenne mobile indicielle (EMA) et un indicateur aléatoire (oscillateur stochastique) pour suivre la tendance et la continuité, et possède des fonctionnalités intéressantes. J’ai conçu cette stratégie spécifiquement pour le trading de devises alternatives, mais elle s’applique également au bitcoin lui-même et à certaines paires de devises.

Principe de stratégie

La stratégie comporte 4 conditions nécessaires pour lancer un signal de trading. Voici les conditions pour lancer un signal de trading multiple (le signal de placement est tout le contraire):

  • L’EMA rapide est supérieure à l’EMA lente
  • Les lignes K aléatoires sont dans la zone de survente
  • La ligne K aléatoire traverse la ligne D aléatoire vers le haut
  • La clôture du cours se situe entre l’EMA lente et l’EMA rapide

Une fois que toutes les conditions sont vraies, la ligne K suivante est ouverte.

Analyse des avantages

La stratégie combine les avantages de l’EMA et des indicateurs aléatoires pour capturer efficacement le début et la continuation de la tendance et convient aux opérations sur les lignes moyennes et longues. La stratégie fournit également une variété de paramètres personnalisables que l’utilisateur peut ajuster en fonction de son style de négociation et de ses caractéristiques du marché.

Plus précisément, les avantages de la stratégie sont:

  1. Les EMA se croisent pour juger de la direction de la tendance et renforcer la stabilité et la fiabilité du signal
  2. Un indicateur aléatoire pour déterminer si une survente est une survente, et une chance de revenir en arrière
  3. La combinaison de deux indicateurs, le suivi de la tendance et le trading à la baisse
  4. L’ATR calcule automatiquement la distance de stop-loss, qui est ajustée en fonction de la volatilité du marché.
  5. Résultats de recherche personnalisables pour répondre aux besoins des utilisateurs
  6. Offre une large gamme de paramètres personnalisés que l’utilisateur peut ajuster en fonction du marché

Analyse des risques

Les principaux risques de cette stratégie proviennent de:

  1. Les signaux formés par des croisements EMA peuvent présenter des fausses ruptures, ce qui génère un faux signal.
  2. L’indicateur aléatoire est lui-même retardataire et risque de manquer le meilleur moment pour un renversement de prix
  3. Une seule stratégie ne peut pas s’adapter à un environnement de marché changeant

Les mesures suivantes peuvent être prises pour réduire ces risques:

  1. Ajustez les paramètres de la période EMA de manière appropriée pour éviter une surproduction de faux signaux
  2. Une meilleure fiabilité des signaux de négociation, combinée à plus d’indicateurs de tendances et de supports
  3. Mettre en place une stratégie de gestion des fonds claire et maîtriser l’excédent de risque de chaque transaction
  4. Utilisation de stratégies composites permettant aux différentes stratégies de vérifier les signaux les unes par rapport aux autres et d’améliorer la stabilité

Direction d’optimisation

Cette stratégie peut être optimisée dans les domaines suivants:

  1. Ajout d’un module d’ajustement de position basé sur la volatilité. Réduire la position de manière appropriée lorsque la volatilité du marché augmente; Augmenter la position lorsque la volatilité diminue.
  2. Augmenter le jugement sur les tendances à grande échelle et éviter les opérations de contre-courant. Par exemple, en combinant les lignes K quotidiennes ou hebdomadaires pour juger de la direction de la tendance.
  3. Ajout de modèles d’apprentissage automatique pour juger des signaux d’achat et de vente. Des modèles de classification peuvent être formés à partir de données historiques pour aider à générer des signaux de transaction.
  4. Optimiser le module de stratégie de gestion de fonds pour rendre le Stop Loss et la taille de position plus intelligents.

Résumer

Cette stratégie, qui intègre les avantages du suivi de la tendance et du trading inverse, prend en compte à la fois l’environnement du marché à grande échelle et le comportement des prix actuels. C’est une stratégie efficace qui vaut la peine de suivre le marché réel à long terme.

Code source de la stratégie
/*backtest
start: 2023-11-18 00:00:00
end: 2023-12-18 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © LucasVivien

// Since this Strategy may have its stop loss hit within the opening candle, consider turning on 'Recalculate : After Order is filled' in the strategy settings, in the "Properties" tabs

//@version=5
strategy("Stochastic Moving Average", shorttitle="Stoch. EMA", overlay=true, default_qty_type= strategy.cash, initial_capital=10000, default_qty_value=100)

//==============================================================================
//==============================   USER INPUT   ================================
//==============================================================================

var g_tradeSetup = "     Trade Setup"
activateLongs  = input.bool (title="Long Trades"        , defval=true                                       , inline="A1", group=g_tradeSetup, tooltip="")
activateShorts = input.bool (title="Short Trades"       , defval=true                                       , inline="A1", group=g_tradeSetup, tooltip="")
rr             = input.float(title="Risk : Reward"      , defval=1   , minval=0, maxval=100       , step=0.1, inline=""  , group=g_tradeSetup, tooltip="")
RiskEquity     = input.bool (title="Risk = % Equity    ", defval=false                                      , inline="A2", group=g_tradeSetup, tooltip="Set stop loss size as a percentage of 'Initial Capital' -> Strategy Parameter -> Properties tab (Low liquidity markets will affect will prevent to get an exact amount du to gaps)")
riskPrctEqui   = input.float(title=""                   , defval=1   , minval=0, maxval=100       , step=0.1, inline="A2", group=g_tradeSetup, tooltip="")
RiskUSD        = input.bool (title="Risk = $ Amount   " , defval=false                                      , inline="A3", group=g_tradeSetup, tooltip="Set stop loss size as a fixed Base currency amount (Low liquidity markets will affect will prevent to get an exact amount du to gaps)")
riskUSD        = input.float(title=""                   , defval=1000, minval=0, maxval=1000000000, step=100, inline="A3", group=g_tradeSetup, tooltip="")

var g_stopLoss = "     Stop Loss"
atrMult = input.float(title="ATR Multiplier", defval=1 , minval=0, maxval=100 , step=0.1, tooltip="", inline="", group=g_stopLoss)
atrLen  = input.int  (title="ATR Lookback"  , defval=14, minval=0, maxval=1000, step=1  , tooltip="", inline="", group=g_stopLoss)

var g_stochastic = "     Stochastic"
Klen            = input.int  (title="K%"                   , defval=14, minval=0, maxval=1000, step=1, inline="S2", group=g_stochastic, tooltip="")
Dlen            = input.int  (title=" D%"                  , defval=3 , minval=0, maxval=1000, step=1, inline="S2", group=g_stochastic, tooltip="")
OBstochLvl      = input.int  (title="OB"                   , defval=80, minval=0, maxval=100 , step=1, inline="S1", group=g_stochastic, tooltip="")
OSstochLvl      = input.int  (title=" OS"                  , defval=20, minval=0, maxval=100 , step=1, inline="S1", group=g_stochastic, tooltip="")
OBOSlookback    = input.int  (title="Stoch. OB/OS lookback", defval=0 , minval=0, maxval=100 , step=1, inline=""  , group=g_stochastic, tooltip="This option allow to look 'x' bars back for a value of the Stochastic K line to be overbought or oversold when detecting an entry signal (if 0, looks only at current bar. if 1, looks at current and previous and so on)")
OBOSlookbackAll = input.bool (title="All must be OB/OS"    , defval=false                            , inline=""  , group=g_stochastic, tooltip="If turned on, all bars within the Stochastic K line lookback period must be overbought or oversold to return a true signal")
entryColor      = input.color(title="   "                  , defval=#00ffff                          , inline="S3", group=g_stochastic, tooltip="")
baseColor       = input.color(title="  "                   , defval=#333333                          , inline="S3", group=g_stochastic, tooltip="Will trun to designated color when stochastic gets to opposite extrem zone of current trend / Number = transparency")
transp          = input.int  (title="   "                  , defval=50, minval=0, maxval=100, step=10, inline="S3", group=g_stochastic, tooltip="")

var g_ema = "     Exp. Moving Average"
ema1len = input.int  (title="Fast EMA     ", defval=21, minval=0, maxval=1000, step=1, inline="E1", group=g_ema, tooltip="")
ema2len = input.int  (title="Slow EMA     ", defval=50, minval=0, maxval=1000, step=1, inline="E2", group=g_ema, tooltip="")
ema1col = input.color(title="     "        , defval=#0066ff                          , inline="E1", group=g_ema, tooltip="")
ema2col = input.color(title="     "        , defval=#0000ff                          , inline="E2", group=g_ema, tooltip="")

var g_referenceMarket ="     Reference Market"
refMfilter = input.bool     (title="Reference Market Filter", defval=false            , inline="", group=g_referenceMarket)
market     = input   (title="Market"                 , defval="BTC_USDT:swap", inline="", group=g_referenceMarket)
res        = input.timeframe(title="Timeframe"              , defval="30"             , inline="", group=g_referenceMarket)
len        = input.int      (title="EMA Length"             , defval=50               , inline="", group=g_referenceMarket)


//==============================================================================
//==========================   FILTERS & SIGNALS   =============================
//==============================================================================

//------------------------------   Stochastic   --------------------------------
K = ta.stoch(close, high, low, Klen)
D = ta.sma(K, Dlen)
stochBullCross = ta.crossover(K, D)
stochBearCross = ta.crossover(D, K)
OSstoch = false
OBstoch = false
for i = 0 to OBOSlookback
    if K[i] < OSstochLvl
        OSstoch := true
    else 
        if OBOSlookbackAll
            OSstoch := false
for i = 0 to OBOSlookback
    if K[i] > OBstochLvl
        OBstoch := true
    else 
        if OBOSlookbackAll
            OBstoch := false

//----------------------------   Moving Averages   -----------------------------
ema1 = ta.ema(close, ema1len)
ema2 = ta.ema(close, ema2len)
emaBull = ema1 > ema2
emaBear = ema1 < ema2

//----------------------------   Price source   --------------------------------
bullRetraceZone = (close < ema1 and close >= ema2) 
bearRetraceZone = (close > ema1 and close <= ema2)

//---------------------------   Reference market   -----------------------------
ema      = ta.ema(close, len)
emaHTF   = request.security(market, res, ema  [barstate.isconfirmed ? 0 : 1])
closeHTF = request.security(market, res, close[barstate.isconfirmed ? 0 : 1])

bullRefMarket = (closeHTF > emaHTF or closeHTF[1] > emaHTF[1])
bearRefMarket = (closeHTF < emaHTF or closeHTF[1] < emaHTF[1])

//--------------------------   SIGNAL VALIDATION   -----------------------------
validLong  = stochBullCross and OSstoch and emaBull and bullRetraceZone 
 and activateLongs  and (refMfilter ? bullRefMarket : true) and strategy.position_size == 0
validShort = stochBearCross and OBstoch and emaBear and bearRetraceZone 
 and activateShorts and (refMfilter ? bearRefMarket : true) and strategy.position_size == 0


//==============================================================================
//===========================   STOPS & TARGETS   ==============================
//==============================================================================

SLdist      = ta.atr(atrLen) * atrMult
longSL      = close - SLdist
longSLDist  = close - longSL
longTP      = close + (longSLDist * rr)
shortSL     = close + SLdist
shortSLDist = shortSL - close
shortTP     = close - (shortSLDist * rr)
var SLsaved = 0.0
var TPsaved = 0.0
if validLong or validShort
    SLsaved := validLong ? longSL : validShort ? shortSL : na
    TPsaved := validLong ? longTP : validShort ? shortTP : na


//==============================================================================
//==========================   STRATEGY COMMANDS   =============================
//==============================================================================
 
if validLong 
    strategy.entry("Long", strategy.long, 
     qty = RiskEquity ? ((riskPrctEqui/100)*strategy.equity)/longSLDist : RiskUSD ? riskUSD/longSLDist : na)
if validShort 
    strategy.entry("Short", strategy.short, 
     qty = RiskEquity ? ((riskPrctEqui/100)*strategy.equity)/shortSLDist  : RiskUSD ? riskUSD/shortSLDist : na)

strategy.exit(id="Long Exit" , from_entry="Long" , limit=TPsaved, stop=SLsaved, when=strategy.position_size > 0)
strategy.exit(id="Short Exit", from_entry="Short", limit=TPsaved, stop=SLsaved, when=strategy.position_size < 0)


//==============================================================================
//=============================   CHART PLOTS   ================================
//==============================================================================
    
//----------------------------   Stops & Targets   -----------------------------
plot(strategy.position_size != 0 or (strategy.position_size[1] != 0 and strategy.position_size == 0) ? SLsaved : na,
 color=color.red  , style=plot.style_linebr)
plot(strategy.position_size != 0 or (strategy.position_size[1] != 0 and strategy.position_size == 0) ? TPsaved : na,
 color=color.green, style=plot.style_linebr) 

//---------------------------------   EMAs   -----------------------------------
l1 = plot(ema1, color=#0066ff, linewidth=2)
l2 = plot(ema2, color=#0000ff, linewidth=2)

//--------------------------   Stochastic gradient   ---------------------------
// fill(l1, l2, color.new(color.from_gradient(K, OSstochLvl, OBstochLvl,
//  emaBull ? entryColor : emaBear ? baseColor : na, 
//  emaBull ? baseColor  : emaBear ? entryColor : na), transp))
    
//----------------------------   Trading Signals   -----------------------------
plotshape(validLong, color=color.green, location=location.belowbar, style=shape.xcross, size=size.small)
plotshape(validShort, color=color.red , location=location.abovebar, style=shape.xcross, size=size.small)

//----------------------------   Reference Market   ----------------------------
bgcolor(bullRefMarket and refMfilter ? color.new(color.green,90) : na)
bgcolor(bearRefMarket and refMfilter ? color.new(color.red  ,90) : na)