
Cette stratégie utilise l’indicateur de moyenne mobile adaptative Kaufman (KAMA) pour suivre les tendances des prix, réaliser des achats bas et des ventes hautes, et réaliser des bénéfices.
La formule de Kaufman pour l’indicateur des moyennes mobiles adaptées est la suivante:
nAMA = nz(nAMA[1]) + nsmooth * (Close - nz(nAMA[1]))
其中:
nsmooth = (nefratio * (nfastend - nslowend) + nslowend)^2
nefratio = nsignal / nnoise
nsignal = |Close - Close[Length]|
nnoise = sum(|Close - Close[1]|, Length)
nfastend = 0.666
nslowend = 0.0645
L’analyse de l’indicateur prend en compte la volatilité du marché et les tendances de variation des prix, ce qui permet de suivre plus rapidement les tendances des prix.
En comparant les prix et la relation entre les KAMA, on peut déterminer la direction de la tendance des prix et ainsi décider de faire plus de blanchiment.
Le plus grand avantage de cette stratégie réside dans l’utilisation d’indicateurs de moyenne mobile adaptatifs pour suivre les changements de tendance des prix, ce qui permet de réduire efficacement l’impact du bruit et d’améliorer l’efficacité du suivi. Les avantages spécifiques sont les suivants:
Cette stratégie comporte aussi des risques:
La stratégie peut également être optimisée dans les domaines suivants:
Cette stratégie utilise l’indicateur de moyenne mobile adaptatif Kaufman pour suivre la tendance des prix, les règles de décision sont simples et claires, l’opération est facile en direct. L’indicateur est silencieux et répond rapidement aux changements de prix, et le suivi est efficace.
/*backtest
start: 2023-12-03 00:00:00
end: 2024-01-02 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=2
////////////////////////////////////////////////////////////
// Copyright by HPotter v1.0 25/08/2017
// Everyone wants a short-term, fast trading trend that works without large
// losses. That combination does not exist. But it is possible to have fast
// trading trends in which one must get in or out of the market quickly, but
// these have the distinct disadvantage of being whipsawed by market noise
// when the market is volatile in a sideways trending market. During these
// periods, the trader is jumping in and out of positions with no profit-making
// trend in sight. In an attempt to overcome the problem of noise and still be
// able to get closer to the actual change of the trend, Kaufman developed an
// indicator that adapts to market movement. This indicator, an adaptive moving
// average (AMA), moves very slowly when markets are moving sideways but moves
// swiftly when the markets also move swiftly, change directions or break out of
// a trading range.
//
// You can change long to short in the Input Settings
// Please, use it only for learning or paper trading. Do not for real trading.
////////////////////////////////////////////////////////////
strategy(title="Kaufman Moving Average Adaptive (KAMA)", shorttitle="Kaufman Moving Average Adaptive (KAMA)", overlay = true)
Length = input(21, minval=1)
xPrice = close
xvnoise = abs(xPrice - xPrice[1])
nfastend = 0.666
nslowend = 0.0645
reverse = input(false, title="Trade reverse")
nsignal = abs(xPrice - xPrice[Length])
nnoise = sum(xvnoise, Length)
nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
nAMA = nz(nAMA[1]) + nsmooth * (xPrice - nz(nAMA[1]))
pos = iff(close[1] > nAMA, 1,
iff(close[1] < nAMA, -1, nz(pos[1], 0)))
possig = iff(reverse and pos == 1, -1,
iff(reverse and pos == -1, 1, pos))
if (possig == 1)
strategy.entry("Long", strategy.long)
if (possig == -1)
strategy.entry("Short", strategy.short)
barcolor(possig == -1 ? red: possig == 1 ? green : blue )
plot(nAMA, color=blue, title="KAMA")