
Cette stratégie utilise de multiples indicateurs techniques tels que l’IMACD, l’EMA et le tableau d’équilibre à première vue pour construire un modèle d’arbre de décision complet pour émettre des signaux d’achat et de vente.
Faire plus de signaux: Faire plus de signaux lorsque l’IMACD est une couleur spécifique et que l’EMA 40 est supérieur à la trajectoire du nuage
Signal de mise à l’écart: mise à l’écart lorsque l’IMACD est rouge et que l’EMA 40 est en dessous du nuage
Résolution des risques: optimisation des paramètres, ajustement de la longueur de l’EMA, simplification des processus opérationnels.
Cette stratégie utilise de multiples indicateurs pour identifier les tendances, construire des modèles d’arbres de décision pour générer des signaux de trading. Les avantages sont la qualité du signal, la précision élevée et la possibilité d’optimiser progressivement. Il est nécessaire de prêter attention à l’optimisation des paramètres et à la stratégie de stop-loss pour contrôler les risques de trading et ainsi obtenir des rendements stables à long terme.
/*backtest
start: 2024-01-14 00:00:00
end: 2024-01-21 00:00:00
period: 30m
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("Decision Tree Strategy: IMACD, EMA and Ichimoku [cryptoonchain]", overlay=true)
lengthMA = input(34, title="Length MA")
lengthSignal = input(9, title="Length Signal")
conversionPeriods = input.int(9, minval=1, title="Conversion Line Length")
basePeriods = input.int(26, minval=1, title="Base Line Length")
laggingSpan2Periods = input.int(52, minval=1, title="Leading Span B Length")
displacement = input.int(26, minval=1, title="Lagging Span")
emaLength = input(40, title="EMA Length") // Added user-configurable EMA length
calc_smma(src, len) =>
smma = float(na)
smma := na(smma[1]) ? ta.sma(src, len) : (smma[1] * (len - 1) + src) / len
smma
calc_zlema(src, length) =>
ema1 = ta.ema(src, length)
ema2 = ta.ema(ema1, length)
d = ema1 - ema2
ema1 + d
src = ohlc4
hi = calc_smma(high, lengthMA)
lo = calc_smma(low, lengthMA)
mi = calc_zlema(src, lengthMA)
md = (mi > hi) ? (mi - hi) : (mi < lo) ? (mi - lo) : 0
sb = ta.sma(md, lengthSignal)
sh = md - sb
mdc = src > mi ? (src > hi ? color.rgb(128, 255, 0, 26) : color.green) : (src < lo ? color.red : color.orange)
colorCondition = color.rgb(128, 255, 0, 26)
conversionLine = math.avg(ta.lowest(conversionPeriods), ta.highest(conversionPeriods))
baseLine = math.avg(ta.lowest(basePeriods), ta.highest(basePeriods))
leadLine1 = math.avg(conversionLine, baseLine)
leadLine2 = math.avg(ta.lowest(laggingSpan2Periods), ta.highest(laggingSpan2Periods))
// Use user-configurable length for EMA
ema40 = ta.ema(close, emaLength)
ebc = input(false, title="Enable bar colors")
barcolor(ebc ? mdc : na)
conversionLinePlot = plot(conversionLine, color=#2962FF, title="Conversion Line", display=display.none)
baseLinePlot = plot(baseLine, color=#B71C1C, title="Base Line", display=display.none)
laggingSpanPlot = plot(close, offset=-displacement + 1, color=#43A047, title="Lagging Span", display=display.none)
leadLine1Plot = plot(leadLine1, offset=displacement - 1, color=#A5D6A7, title="Leading Span A", display=display.none)
leadLine2Plot = plot(leadLine2, offset=displacement - 1, color=#EF9A9A, title="Leading Span B", display=display.none)
kumoCloudUpperLinePlot = plot(leadLine1 > leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Upper Line", display=display.none)
kumoCloudLowerLinePlot = plot(leadLine1 < leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Lower Line", display=display.none)
fill(kumoCloudUpperLinePlot, kumoCloudLowerLinePlot, color=leadLine1 > leadLine2 ? color.green : color.red)
a = (leadLine1 > leadLine2 ? leadLine1 : leadLine2)
b = (leadLine1 < leadLine2 ? leadLine1 : leadLine2)
if mdc == colorCondition and ema40 > a[displacement - 1]
strategy.entry("Long", strategy.long)
if mdc == color.red and ema40 < b[displacement - 1]
strategy.entry("Short", strategy.short)