
La stratégie utilise des algorithmes d’apprentissage automatique K pour prédire la tendance des prix. En choisissant différents méthodes de calcul des prix (comme HL2, VWAP, SMA, etc.) comme valeurs d’entrée, et en choisissant différents valeurs cibles (comme le mouvement des prix, VWAP, volatilité, etc.) comme objets d’évaluation, l’algorithme KNN est utilisé pour trouver les points de données historiques K les plus proches de l’état actuel du marché, et sur la base de la direction de la tendance de ces points de données K pour effectuer des prévisions multifonctions.
La stratégie montre comment utiliser les données historiques et les méthodes statistiques pour saisir les tendances du marché et générer des signaux de négociation en appliquant l’algorithme d’apprentissage automatique KNN à la prévision des tendances des prix. L’avantage de la stratégie réside dans son adaptabilité et sa flexibilité, sa capacité à optimiser la performance et à s’adapter à différentes conditions du marché grâce à des ajustements paramétriques. Cependant, les risques de la stratégie proviennent principalement de la qualité et de la représentativité des données historiques, ainsi que de la rationalité des paramètres définis.
/*backtest
start: 2023-05-09 00:00:00
end: 2024-05-14 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/
// © Blake_22 {
//@version=5
strategy('money printer part 1', overlay=true)
// ~~ Tooltips {
t1 ="PriceValue selects the method of price computation. \n\nSets the smoothing period for the PriceValue. \n\nAdjusting these settings will change the input values for the K-Nearest Neighbors algorithm, influencing how the trend is calculated."
t2 = "TargetValue specifies the target to evaluate. \n\nSets the smoothing period for the TargetValue."
t3 ="numberOfClosestValues sets the number of closest values that are considered when calculating the KNN Moving Average. Adjusting this number will affect the sensitivity of the trend line, with a higher value leading to a smoother line and a lower value resulting in a line that is more responsive to recent price changes."
t4 ="smoothingPeriod sets the period for the moving average applied to the KNN classifier. Adjusting the smoothing period will affect how rapidly the trend line responds to price changes, with a larger smoothing period leading to a smoother line that may lag recent price movements, and a smaller smoothing period resulting in a line that more closely tracks recent changes."
t5 ="This option controls the background color for the trend prediction. Enabling it will change the background color based on the prediction, providing visual cues on the direction of the trend. A green color indicates a positive prediction, while red indicates a negative prediction."
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ Inputs {
PriceValue = input.string("hl2", options = ["hl2","VWAP", "sma", "wma", "ema", "hma"], group="", inline="Value")
maLen = input.int(5, minval=2, maxval=200, title="", group="", inline="Value", tooltip=t1)
TargetValue = input.string("Price Action", options = ["Price Action","VWAP", "Volatility", "sma", "wma", "ema", "hma"], group="", inline="Target")
maLen_ = input.int(5, minval=2, maxval=200, title="", group="", inline="Target", tooltip=t2)
// Input parameters for the KNN Moving Average
numberOfClosestValues = input.int(3, "Number of Closest Values", 2, 200, tooltip=t3)
smoothingPeriod = input.int(50, "Smoothing Period", 2, 500, tooltip=t4)
windowSize = math.max(numberOfClosestValues, 30)
// knn Color
Upknn_col = input.color(color.lime, title="", group="KNN Color", inline="knn col")
Dnknn_col = input.color(color.red, title="", group="KNN Color", inline="knn col")
Neuknn_col = input.color(color.orange, title="", group="KNN Color", inline="knn col")
// MA knn Color
Maknn_col = input.color(color.teal, title="", group="MA KNN Color", inline="MA knn col")
// BG Color
bgcolor = input.bool(false, title="Trend Prediction Color", group="BG Color", inline="bg", tooltip=t5)
Up_col = input.color(color.lime, title="", group="BG Color", inline="bg")
Dn_col = input.color(color.red, title="", group="BG Color", inline="bg")
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ kNN Classifier {
value_in = switch PriceValue
"hl2" => ta.sma(hl2,maLen)
"VWAP" => ta.vwap(close[maLen])
"sma" => ta.sma(close,maLen)
"wma" => ta.wma(close,maLen)
"ema" => ta.ema(close,maLen)
"hma" => ta.hma(close,maLen)
meanOfKClosest(value_,target_) =>
closestDistances = array.new_float(numberOfClosestValues, 1e10)
closestValues = array.new_float(numberOfClosestValues, 0.0)
for i = 1 to windowSize
value = value_[i]
distance = math.abs(target_ - value)
maxDistIndex = 0
maxDistValue = closestDistances.get(0)
for j = 1 to numberOfClosestValues - 1
if closestDistances.get(j) > maxDistValue
maxDistIndex := j
maxDistValue := closestDistances.get(j)
if distance < maxDistValue
closestDistances.set(maxDistIndex, distance)
closestValues.set(maxDistIndex, value)
closestValues.sum() / numberOfClosestValues
// Choose the target input based on user selection
target_in = switch TargetValue
"Price Action" => ta.rma(close,maLen_)
"VWAP" => ta.vwap(close[maLen_])
"Volatility" => ta.atr(14)
"sma" => ta.sma(close,maLen_)
"wma" => ta.wma(close,maLen_)
"ema" => ta.ema(close,maLen_)
"hma" => ta.hma(close,maLen_)
knnMA = meanOfKClosest(value_in,target_in)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ kNN Prediction {
// Function to calculate KNN Classifier
price = math.avg(knnMA, close)
c = ta.rma(knnMA[1], smoothingPeriod)
o = ta.rma(knnMA, smoothingPeriod)
// Defines KNN function to perform classification
knn(price) =>
Pos_count = 0
Neg_count = 0
min_distance = 10e10
nearest_index = 0
for j = 1 to 10
distance = math.sqrt(math.pow(price[j] - price, 2))
if distance < min_distance
min_distance := distance
nearest_index := j
Neg = c[nearest_index] > o[nearest_index]
Pos = c[nearest_index] < o[nearest_index]
if Pos
Pos_count += 1
if Neg
Neg_count += 1
output = Pos_count>Neg_count?1:-1
// Calls KNN function and smooths the prediction
knn_prediction_raw = knn(price)
knn_prediction = ta.wma(knn_prediction_raw, 3)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ Plots {
// Plots for display on the chart
knnMA_ = ta.wma(knnMA,5)
knnMA_col = knnMA_>knnMA_[1]?Upknn_col:knnMA_<knnMA_[1]?Dnknn_col:Neuknn_col
Classifier_Line = plot(knnMA_,"Knn Classifier Line", knnMA_col)
MAknn_ = ta.rma(knnMA, smoothingPeriod)
plot(MAknn_,"Average Knn Classifier Line" ,Maknn_col)
green = knn_prediction < 0.5
red = knn_prediction > -0.5
bgcolor( green and bgcolor? color.new(Dn_col,80) :
red and bgcolor ? color.new(Up_col,80) : na)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ Alerts {
knnMA_cross_Over_Ma = ta.crossover(knnMA_,MAknn_)
knnMA_cross_Under_Ma = ta.crossunder(knnMA_,MAknn_)
knnMA_cross_Over_Close = ta.crossover(knnMA_,close)
knnMA_cross_Under_Close = ta.crossunder(knnMA_,close)
knnMA_Switch_Up = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2]
knnMA_Switch_Dn = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2]
knnMA_Neutral = knnMA_col==Neuknn_col and knnMA_col[1]!=Neuknn_col
greenBG = green and not green[1]
redBG = red and not red[1]
alertcondition(knnMA_cross_Over_Ma, title = "Knn Crossover Average Knn", message = "Knn Crossover Average Knn")
alertcondition(knnMA_cross_Under_Ma, title = "Knn Crossunder Average Knn", message = "Knn Crossunder Average Knn")
alertcondition(knnMA_cross_Over_Close, title = "Knn Crossover Close", message = "Knn Crossover Close")
alertcondition(knnMA_cross_Under_Close, title = "Knn Crossunder Close", message = "Knn Crossunder Close")
alertcondition(knnMA_Switch_Up, title = "Knn Switch Up", message = "Knn Switch Up")
alertcondition(knnMA_Switch_Dn, title = "Knn Switch Dn", message = "Knn Switch Dn")
alertcondition(knnMA_Neutral, title = "Knn is Neutral", message = "Knn is Neutral")
alertcondition(greenBG, title = "Positive Prediction", message = "Positive Prediction")
alertcondition(redBG, title = "Negative Prediction", message = "Negative Prediction")
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
//~~Trenddilo {
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
//~~ strategy { 1
LongCondtion = knnMA_[1]<knnMA_ and knnMA_[1]<=knnMA_[2]
ShortCondtion = knnMA_[1]>knnMA_ and knnMA_[1]>=knnMA_[2]
//SecondaryLongCondtion = col == color.lime
//SecondaryShortCondtion = col == color.red
strategy.entry("Long", strategy.long, when = LongCondtion)
strategy.close("Long", when =ShortCondtion)
strategy.entry("Short", strategy.short, when =ShortCondtion)
strategy.close("short", when =LongCondtion)
plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}