
Cette stratégie est une méthode de trading quantitative combinant le suivi des tendances et l’apprentissage automatique, conçue pour capturer les tendances du marché et réduire les risques grâce à des signaux d’arrêt et de confirmation de tendances dynamiques. La stratégie utilise les moyennes mobiles simples à court et à long terme (SMA) pour identifier la direction de la tendance potentielle et utilise l’indice de force relative (RSI) comme agent de confiance d’apprentissage automatique pour confirmer les signaux de trading.
La stratégie de suivi de tendance dynamique et la gestion du risque renforcée par l’apprentissage automatique sont des méthodes de trading quantitatives intégrées qui offrent aux traders un outil puissant en combinant le suivi de tendance, la reconnaissance de signaux et la gestion du risque dynamique. Bien que les stratégies présentent des risques potentiels, leur performance et leur adaptabilité peuvent être encore améliorées par une optimisation et une amélioration continues.
/*backtest
start: 2024-09-18 00:00:00
end: 2024-09-25 00:00:00
period: 15m
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("Enhanced Trend Following with ML", overlay=true)
// User Inputs
shortLength = input.int(20, minval=1, title="Short Moving Average Length")
longLength = input.int(50, minval=1, title="Long Moving Average Length")
atrPeriod = input.int(14, title="ATR Period")
stopLossMultiplier = input.float(2.0, title="Stop Loss Multiplier")
mlConfidenceThreshold = input.float(0.5, title="ML Confidence Threshold")
// Calculate Moving Averages
shortMA = ta.sma(close, shortLength)
longMA = ta.sma(close, longLength)
// Plot Moving Averages
plot(shortMA, title="Short MA", color=color.red)
plot(longMA, title="Long MA", color=color.blue)
// Trend Strength Indicator (using RSI as a proxy for ML confidence)
mlSignal = math.round(ta.rsi(close, 14) / 100)
// Conditions for entering trades
longCondition = ta.crossover(shortMA, longMA) and mlSignal > mlConfidenceThreshold
shortCondition = ta.crossunder(shortMA, longMA) and mlSignal < (1 - mlConfidenceThreshold)
// ATR for dynamic stop loss
atrValue = ta.atr(atrPeriod)
stopLoss = atrValue * stopLossMultiplier
// Trade Entry
if (longCondition)
strategy.entry("Long", strategy.long)
strategy.exit("SLLong", "Long", stop=strategy.position_avg_price - stopLoss)
if (shortCondition)
strategy.entry("Short", strategy.short)
strategy.exit("SLShort", "Short", stop=strategy.position_avg_price + stopLoss)
// Trade Management
longCrossover = ta.crossover(shortMA, longMA)
shortCrossunder = ta.crossunder(shortMA, longMA)
if (strategy.position_size > 0)
if (longCrossover)
strategy.close("Long")
if (strategy.position_size < 0)
if (shortCrossunder)
strategy.close("Short")
// Trailing Stop for existing positions
var float trailStopLong = strategy.position_avg_price
var float trailStopShort = strategy.position_avg_price
if (strategy.position_size > 0)
trailStopLong := math.min(trailStopLong, close)
strategy.exit("TrailLong", "Long", stop=trailStopLong)
if (strategy.position_size < 0)
trailStopShort := math.max(trailStopShort, close)
strategy.exit("TrailShort", "Short", stop=trailStopShort)
// Additional alert for trend changes
alertcondition(longCrossover, title="Bullish Trend Change", message="Bullish trend change detected")
alertcondition(shortCrossunder, title="Bearish Trend Change", message="Bearish trend change detected")