Stratégie de trading EMA-Squeeze avec stop loss dynamique pour plusieurs périodes

EMA SQM CMF KC SL TP MTF
Date de création: 2024-12-11 15:50:38 Dernière modification: 2024-12-11 15:50:38
Copier: 0 Nombre de clics: 435
1
Suivre
1617
Abonnés

Stratégie de trading EMA-Squeeze avec stop loss dynamique pour plusieurs périodes

Aperçu

La stratégie est un système de trading dynamique basé sur l’analyse de plusieurs périodes de temps, combinant l’indice des moyennes mobiles (EMA), l’indice des quantités dynamiques (SQM) et l’indice des flux de fonds (CMF) pour générer des signaux de trading. Le cœur de la stratégie est de confirmer les tendances par l’analyse de plusieurs périodes de temps et d’utiliser des arrêts dynamiques pour optimiser la gestion des risques.

Principe de stratégie

La stratégie utilise trois combinaisons d’indicateurs techniques principaux pour identifier les opportunités de trading. Tout d’abord, l’orientation de la tendance du marché est déterminée par les EMA du cycle 11 et du cycle 34. Ensuite, l’indicateur Squeeze Momentum, une version améliorée, est utilisé pour détecter les pressions du marché et les opportunités de rupture potentielles. L’indicateur calcule l’écart de prix par une méthode de régression linéaire.

Avantages stratégiques

  1. Confirmation de signaux multidimensionnels: Réduit considérablement le risque de faux signaux en combinant plusieurs indicateurs techniques et l’analyse des périodes.
  2. Gestion intelligente des risques: le système d’arrêt dynamique des pertes peut s’adapter automatiquement aux fluctuations du marché, tout en protégeant les bénéfices et en évitant les sorties prématurées.
  3. Adaptabilité: les paramètres de la stratégie peuvent être ajustés en fonction des différentes conditions du marché et ont une bonne adaptabilité.
  4. Une boucle de négociation complète: des règles claires pour la gestion des signaux d’entrée à la sortie, réduisant l’influence du jugement subjectif.
  5. Confirmation des flux de trésorerie: La vérification des mouvements de prix par la surveillance des flux de trésorerie améliore la fiabilité des transactions.

Risque stratégique

  1. Sensitivité des paramètres: les paramètres de plusieurs indicateurs techniques nécessitent une optimisation soignée, et des paramètres inappropriés peuvent entraîner une baisse des performances.
  2. La dépendance au marché: la qualité du signal peut être affectée par des conditions de marché très volatiles ou peu liquides.
  3. Complexité du calcul: le calcul de plusieurs périodes de temps peut entraîner des retards dans le signal et affecter l’efficacité réelle de la transaction.
  4. Risque d’ajustement au stop loss: le stop loss dynamique peut être trop radical ou conservateur dans certaines conditions de marché.
  5. Exigences de gestion des fonds: la stratégie nécessite une gestion des fonds raisonnable pour équilibrer les risques et les bénéfices.

Orientation de l’optimisation de la stratégie

  1. L’introduction de l’adaptation à la volatilité: des paramètres peuvent être ajustés dynamiquement en fonction de l’ATR ou d’autres indicateurs de volatilité, ce qui améliore l’adaptation de la stratégie.
  2. Optimisation du filtrage du signal: il est possible d’ajouter une pondération de volume ou un filtrage temporel pour améliorer la qualité du signal.
  3. Amélioration des mécanismes d’arrêt des pertes: le réglage des points d’arrêt des pertes peut être optimisé en combinaison avec les points de support et de résistance.
  4. Augmentation de l’analyse de l’environnement du marché: l’introduction d’indicateurs de la force des tendances du marché et l’utilisation de paramètres différents dans différents environnements du marché.
  5. Amélioration de la gestion des fonds: introduction d’algorithmes de gestion des positions, adaptant le ratio de détention en fonction de l’intensité des signaux et des fluctuations du marché.

Résumer

La stratégie offre aux traders un programme de négociation systématisé grâce à une analyse technique multidimensionnelle et à une gestion intelligente des risques. Son avantage central réside dans la combinaison de suivi des tendances et de gestion dynamique des risques, capable de saisir les opportunités de marché tout en protégeant les bénéfices. Bien que la stratégie présente des aspects qui nécessitent une optimisation, elle peut toujours être un outil de négociation efficace grâce à un paramétrage et un contrôle des risques raisonnables.

Code source de la stratégie
/*backtest
start: 2024-11-10 00:00:00
end: 2024-12-09 08:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy("LL Crypto - SUI", overlay=true)

// Parâmetros de tempo para criptomoedas
fast_ema_len = input.int(11, minval=5, title="Fast EMA")
slow_ema_len = input.int(34, minval=20, title="Slow EMA")
sqm_lengthKC = input.int(20, title="SQM KC Length")
kauf_period = input.int(20, title="Kauf Period")
kauf_mult = input.float(2, title="Kauf Mult factor")
min_profit_sl = input.float(5, minval=0.01, maxval=100.0, title="Min profit to start moving SL [%]")
longest_sl = input.float(10, minval=0.01, maxval=100.0, title="Maximum possible of SL [%]")
sl_step = input.float(0.5, minval=0.0, maxval=1.0, title="Take profit factor")

// Parâmetros adaptados para criptomoedas
CMF_length = input.int(11, minval=1, title="CMF length")
show_plots = input.bool(true, title="Show plots")

// Definir intervalos de tempo para criptomoedas
selected_timeframe = input.string(defval="15", title="Intervalo de Tempo", options=["1", "15", "60"])

lower_resolution = timeframe.period == '1' ? '1' :
                   timeframe.period == '5' ? '15' :
                   timeframe.period == '15' ? '60' :
                   timeframe.period == '60' ? '240' :
                   timeframe.period == '240' ? 'D' :
                   timeframe.period == 'D' ? 'W' : 'M'

sp_close = close[barstate.isrealtime ? 1 : 0]
sp_high = high[barstate.isrealtime ? 1 : 0]
sp_low = low[barstate.isrealtime ? 1 : 0]
sp_volume = volume[barstate.isrealtime ? 1 : 0]

// Calcular Squeeze Momentum ajustado para criptomoedas
sqm_val = ta.linreg(sp_close - math.avg(math.avg(ta.highest(sp_high, sqm_lengthKC), ta.lowest(sp_low, sqm_lengthKC)), ta.sma(sp_close, sqm_lengthKC)), sqm_lengthKC, 0)
close_low = request.security(syminfo.tickerid, lower_resolution, sp_close, lookahead=barmerge.lookahead_on)
high_low = request.security(syminfo.tickerid, lower_resolution, sp_high, lookahead=barmerge.lookahead_on)
low_low = request.security(syminfo.tickerid, lower_resolution, sp_low, lookahead=barmerge.lookahead_on)
sqm_val_low = ta.linreg(close_low - math.avg(math.avg(ta.highest(high_low, sqm_lengthKC), ta.lowest(low_low, sqm_lengthKC)), ta.sma(close_low, sqm_lengthKC)), sqm_lengthKC, 0)

// CMF adaptado para criptomoedas
ad = sp_close == sp_high and sp_close == sp_low or sp_high == sp_low ? 0 : ((2 * sp_close - sp_low - sp_high) / (sp_high - sp_low)) * sp_volume
money_flow = math.sum(ad, CMF_length) / math.sum(sp_volume, CMF_length)

// Condições de entrada para criptomoedas
low_condition_long = (sqm_val_low > sqm_val_low[1])
low_condition_short = (sqm_val_low < sqm_val_low[1])
money_flow_min = (money_flow[4] > money_flow[2]) and (money_flow[3] > money_flow[2]) and (money_flow[2] < money_flow[1]) and (money_flow[2] < money_flow)
money_flow_max = (money_flow[4] < money_flow[2]) and (money_flow[3] < money_flow[2]) and (money_flow[2] > money_flow[1]) and (money_flow[2] > money_flow)
condition_long = ((sqm_val > sqm_val[1])) and money_flow_min and ta.lowest(sqm_val, 5) < 0
condition_short = ((sqm_val < sqm_val[1])) and money_flow_max and ta.highest(sqm_val, 5) > 0
enter_long = low_condition_long and condition_long
enter_short = low_condition_short and condition_short

// Stop conditions
var float current_target_price = na
var float current_sl_price = na
var float current_target_per = na
var float current_profit_per = na

set_targets(isLong, min_profit, current_target_per, current_profit_per) =>
    float target = na
    float sl = na
    if isLong
        target := sp_close * (1.0 + current_target_per)
        sl := sp_close * (1.0 - (longest_sl / 100.0))
    else
        target := sp_close * (1.0 - current_target_per)
        sl := sp_close * (1.0 + (longest_sl / 100.0))
    [target, sl]

target_reached(isLong, min_profit, current_target_per, current_profit_per) =>
    float target = na
    float sl = na
    float profit_per = na
    float target_per = na
    if current_profit_per == na
        profit_per := (min_profit * sl_step) / 100.0
    else
        profit_per := current_profit_per + ((min_profit * sl_step) / 100.0)
    target_per := current_target_per + (min_profit / 100.0)
    if isLong
        target := strategy.position_avg_price * (1.0 + target_per)
        sl := strategy.position_avg_price * (1.0 + profit_per)
    else
        target := strategy.position_avg_price * (1.0 - target_per)
        sl := strategy.position_avg_price * (1.0 - profit_per)
    [target, sl, profit_per, target_per]

hl_diff = ta.sma(sp_high - sp_low, kauf_period)
stop_condition_long = 0.0
new_stop_condition_long = sp_low - (hl_diff * kauf_mult)
if (strategy.position_size > 0)
    if (sp_close > current_target_price)
        [target, sl, profit_per, target_per] = target_reached(true, min_profit_sl, current_target_per, current_profit_per)
        current_target_price := target
        current_sl_price := sl
        current_profit_per := profit_per
        current_target_per := target_per
    stop_condition_long := math.max(stop_condition_long[1], current_sl_price)
else
    stop_condition_long := new_stop_condition_long

stop_condition_short = 99999999.9
new_stop_condition_short = sp_high + (hl_diff * kauf_mult)
if (strategy.position_size < 0)
    if (sp_close < current_target_price)
        [target, sl, profit_per, target_per] = target_reached(false, min_profit_sl, current_target_per, current_profit_per)
        current_target_price := target
        current_sl_price := sl
        current_profit_per := profit_per
        current_target_per := target_per
    stop_condition_short := math.min(stop_condition_short[1], current_sl_price)
else
    stop_condition_short := new_stop_condition_short

// Submit entry orders
if (enter_long and (strategy.position_size <= 0))
    if (strategy.position_size < 0)
        strategy.close(id="SHORT")
    current_target_per := (min_profit_sl / 100.0)
    current_profit_per := na
    [target, sl] = set_targets(true, min_profit_sl, current_target_per, current_profit_per)
    current_target_price := target
    current_sl_price := sl
    strategy.entry(id="LONG", direction=strategy.long)

    if show_plots
        label.new(bar_index, sp_high, text="LONG\nSL: " + str.tostring(stop_condition_long), style=label.style_label_down, color=color.green)





if (enter_short and (strategy.position_size >= 0))
    if (strategy.position_size > 0)
        strategy.close(id="LONG")
    current_target_per := (min_profit_sl / 100.0)
    current_profit_per := na
    [target, sl] = set_targets(false, min_profit_sl, current_target_per, current_profit_per)
    current_target_price := target
    current_sl_price := sl
    strategy.entry(id="SHORT", direction=strategy.short)
    if show_plots
        label.new(bar_index, sp_high, text="SHORT\nSL: " + str.tostring(stop_condition_short), style=label.style_label_down, color=color.red)

if (strategy.position_size > 0)
    strategy.exit(id="EXIT LONG", stop=stop_condition_long)

if (strategy.position_size < 0)
    strategy.exit(id="EXIT SHORT", stop=stop_condition_short)

// Plot anchor trend
plotshape(low_condition_long, style=shape.triangleup, location=location.abovebar, color=color.green)
plotshape(low_condition_short, style=shape.triangledown, location=location.abovebar, color=color.red)

plotshape(condition_long, style=shape.triangleup, location=location.belowbar, color=color.green)
plotshape(condition_short, style=shape.triangledown, location=location.belowbar, color=color.red)

plotshape(enter_long, style=shape.triangleup, location=location.bottom, color=color.green)
plotshape(enter_short, style=shape.triangledown, location=location.bottom, color=color.red)

// Plot emas
plot(ta.ema(close, 20), color=color.blue, title="20 EMA")
plot(ta.ema(close, 50), color=color.orange, title="50 EMA")
plot(ta.sma(close, 200), color=color.red, title="MA 200")

// Plot stop loss values for confirmation
plot(series=(strategy.position_size > 0) and show_plots ? stop_condition_long : na, color=color.green, style=plot.style_linebr, title="Long Stop")
plot(series=(strategy.position_size < 0) and show_plots ? stop_condition_short : na, color=color.green, style=plot.style_linebr, title="Short Stop")
plot(series=(strategy.position_size < 0) and show_plots ? current_target_price : na, color=color.yellow, style=plot.style_linebr, title="Short TP")
plot(series=(strategy.position_size > 0) and show_plots ? current_target_price : na, color=color.yellow, style=plot.style_linebr, title="Long TP")