Stratégie de trading cyclique intelligente basée sur la tendance des vagues et un investissement diversifié

WT DCA AO ESA EMA SMA CI VOL
Date de création: 2024-12-20 16:42:45 Dernière modification: 2024-12-20 16:42:45
Copier: 0 Nombre de clics: 473
1
Suivre
1617
Abonnés

Stratégie de trading cyclique intelligente basée sur la tendance des vagues et un investissement diversifié

Aperçu de la stratégie

La stratégie est un système de trading intelligent basé sur l’indicateur de tendance des vagues (Wave Trend) et l’investissement décentralisé (Dollar Cost Averaging). La stratégie analyse les tendances de volatilité du marché, construit progressivement des positions lorsque le marché est en zone de survente, et finit par gagner progressivement lorsque le marché est confirmé. La stratégie combine les avantages de l’analyse technique et de la gestion des risques, permettant d’accumuler des positions de manière stable et de tirer des bénéfices tout au long du cycle du marché.

Principe de stratégie

La logique fondamentale de la stratégie comprend les éléments clés suivants :

  1. Calculer un indicateur de tendance ondulatoire en utilisant la moyenne des prix HLC3 et l’EMA (mobile moving average de l’indice) afin d’identifier les surachats et les survente sur le marché
  2. Les courants macrocycliques sont détectés par l’Awesome Oscillator pour déterminer l’état du marché haussier et baissier.
  3. Pendant une période de marché baissier, les lots sont construits lorsque les prix sont en zone de survente et le pourcentage de construction est dynamiquement ajusté en fonction du niveau de survente
  4. Le système émet un signal “achetez de l’or” lorsque le marché haussier est lancé, ce qui augmente le niveau de la position.
  5. Pendant un marché haussier, lorsque les prix entrent dans la zone de survente, le système réduit progressivement les bénéfices de la position en fonction du niveau de survente
  6. Lorsqu’un signal baissier ou un sommet du marché survient, le système vide tous les dépôts pour verrouiller les gains.

Avantages stratégiques

  1. Réduire le coût de construction des entrepôts en diversifiant les investissements et en évitant les risques d’accumulation
  2. Plusieurs indicateurs techniques se valident de manière croisée pour améliorer la fiabilité des signaux de trading
  3. Gestion de position flexible, adaptation du volume d’achat et de vente en fonction de la dynamique du marché
  4. Une forte défense, qui arrête la perte en temps opportun en cas de signal de baisse
  5. Une logique stratégique claire et des paramètres adaptables pour s’adapter à différents environnements de marché

Risque stratégique

  1. La fréquence des transactions peut augmenter les coûts de transaction dans les marchés en crise.
  2. La stratégie de stockage distribué peut manquer les meilleurs points d’achat dans une tendance à la hausse unilatérale
  3. Les indicateurs techniques sont retardés et peuvent être en retard en cas de fortes fluctuations du marché
  4. Une mauvaise configuration des paramètres peut entraîner une mauvaise synchronisation de la création ou de la suppression d’une position

Orientation de l’optimisation de la stratégie

  1. Introduction d’indicateurs de volatilité et optimisation du calcul du nombre de créations et de réductions de positions
  2. L’ajout de plus d’indicateurs de l’humeur du marché pour améliorer la précision des jugements de tendance
  3. Développer un système de paramètres adaptatifs pour adapter les paramètres en fonction des différentes dynamiques du cycle du marché
  4. Ajout d’un module de gestion des fonds pour un contrôle plus précis des positions

Résumer

Il s’agit d’une stratégie de trading intelligente qui combine de manière organique l’analyse technique et la gestion des risques. Grâce à des indicateurs de tendances ondulées et à une méthode d’investissement décentralisée, il est possible d’obtenir une croissance stable des revenus tout en protégeant la sécurité des fonds. Le principal avantage de la stratégie réside dans son adaptabilité aux différents environnements de marché, ainsi que dans sa logique de trading claire et son mécanisme de contrôle des risques.

Code source de la stratégie
/*backtest
start: 2024-11-19 00:00:00
end: 2024-12-18 08:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5

// Copyright (c) 2024 Seth Ethington.
// All rights reserved.
//
// If this script provides you Bread then share the Dough!
// BTC (God's Money) Address: bc1qrpxvea8ze4ayj2vtr0slp774rulm898gyhe3ss
//
// Redistribution and use in source and binary forms, 
// whether you tweak it or not, is totally fine, 
// but only if you swear on your life that BTC is God's Money! 
// 
// If you're redistributing the source code, 
// you must keep the above copyright notice and, 
// more importantly, the sacred BTC address!
//


strategy(title="Cipher DCA Strategy", shorttitle="Cipher DCA", overlay=false, initial_capital=100, pyramiding=30, currency=currency.USD,  slippage=1, commission_type=strategy.commission.percent, commission_value=0.1, default_qty_type=strategy.percent_of_equity, process_orders_on_close=true)

// Input parameters for the starting date
startDate = input(timestamp("2019-01-01 00:00:00"), title="Start Date (YYYY-MM-DD HH:MM:SS)")


// Input parameters for the indicator
fastLength = input.int(4, title="Fast Wave Length", group="Wave Calculator")  // Length for EMA smoothing of the price channel
slowLength = input.int(33, title="Slow Wave Length", group="Wave Calculator")  // Length for EMA smoothing of the trend channel
wayOverBoughtLevel = input.float(33, title="Way OverBought Level", group="Wave Calculator")
overBoughtLevel = input.float(25, title="Over Bought Level", group="Wave Calculator")
wayOverSoldLevel = input.float(-33, title="Way Over Sold Level", group="Wave Calculator")
overSoldLevel = input.float(-25, title="Over Sold Level", group="Wave Calculator")
accumulatingLevel = input.float(0, title="Accumulating Level", group="Wave Calculator")


// Calculate the average price (HLC3 = (High + Low + Close) / 3)
averagePrice = hlc3

// Compute the smoothed average price (ESA: Exponential Smoothing Average)
exponentialSmoothingAverage = ta.ema(averagePrice, fastLength)

// Compute the deviation (D) between the price and the smoothed average
priceDeviation = ta.ema(math.abs(averagePrice - exponentialSmoothingAverage), fastLength)

// Compute the commodity index (CI) which is normalized price movement
commodityIndex = (averagePrice - exponentialSmoothingAverage) / (0.015 * priceDeviation)

// Smooth the commodity index to create Wave Trend 1 (WT1)
fastWaveTrend = ta.ema(commodityIndex, slowLength)
// //log.info("fastWaveTrend= " + str.tostring(fastWaveTrend))

// Further smooth WT1 using a simple moving average to create Wave Trend 2 (WT2)
slowWaveTrend = ta.sma(fastWaveTrend, 5)
// //log.info("slowWaveTrend= " + str.tostring(slowWaveTrend))


// Plot the center line (0) for reference
plot(0, color=color.white, title="Center Line")

// Plot overbought and oversold levels
plot(wayOverBoughtLevel, color=color.red, title="Way Overbought")
plot(overBoughtLevel, color=color.red, title="Overbought")
plot(overSoldLevel, color=color.green, title="Oversold")
plot(wayOverSoldLevel, color=color.green, title="Way Oversold")

// Plot WT1 and WT2 as filled areas for better visibility
plot(fastWaveTrend, style=plot.style_area, color=color.new(color.blue, 0), title="Fast Wave")
plot(slowWaveTrend, style=plot.style_area, color=color.new(color.navy, 30), title="Slow Wave")

// Highlight the difference between fastWave vs slowWave
waveTrendDifference = fastWaveTrend - slowWaveTrend

// //log.info("waveTrendDifference=" + str.tostring(waveTrendDifference))
plot(waveTrendDifference, color=color.new(color.yellow, 30),style=plot.style_area, title="WT1 - WT2 Difference") //No transparency

// Plot buy and sell signals at crossovers
isCrossover = ta.cross(fastWaveTrend, slowWaveTrend)
// //log.info("isCrossover=" + str.tostring(isCrossover))
plot(isCrossover ? slowWaveTrend : na, color=(slowWaveTrend - fastWaveTrend > 0 ? color.red : color.green), style=plot.style_circles, linewidth=4, title="Crossover Signals")

float waveTrend = na
if (slowWaveTrend > 0 and fastWaveTrend > 0) 
    waveTrend := math.max(slowWaveTrend, fastWaveTrend)
    // //log.info("Both trends are positive. waveTrend set to max value: " + str.tostring(waveTrend))
else if (slowWaveTrend < 0 and fastWaveTrend < 0)
    waveTrend := math.min(slowWaveTrend, fastWaveTrend)
    // //log.info("Both trends are negative. waveTrend set to min value: " + str.tostring(waveTrend))
else 
    waveTrend := 0
    // //log.info("Trends are mixed. waveTrend set to 0.")

// Time to Sell
isCrossingDown = waveTrendDifference < 0

// Time to Buy
isCrossingUp = waveTrendDifference > 0


//-----------------------------------------------------------


// Detect Bull Market and Bear Market using the Awesome Oscillator
// User input for AO thresholds
ao_threshold = input.float(-10, "AO Bull Market Threshold", minval=-50, maxval=50, step=1, group = "Bear and Bull Thresholds")
ao_cycletop_threshold = input.float(5, "AO Bear Market Threshold", minval=0, maxval=200, step=1, group = "Bear and Bull Thresholds")

// Define the Awesome Oscillator
ao = ta.sma(hl2, fastLength) - ta.sma(hl2, slowLength)

// Convert current bar time to the first day of the month for monthly calculations
currentMonthStart = timestamp(year, month, 1, 0, 0)
prevMonthStart = time - (time - currentMonthStart)

// Calculate AO for the start of the month and previous month
aoCurrentMonth = request.security(syminfo.tickerid, 'M', ao[0])
aoPrevMonth1    = request.security(syminfo.tickerid, 'M', ao[1])
aoPrevMonth2    = request.security(syminfo.tickerid, 'M', ao[2])

// Detect bull market based on monthly AO
isBullMarket = aoCurrentMonth > aoPrevMonth1 and aoPrevMonth1 > aoPrevMonth2 and aoCurrentMonth > ao_threshold

// Detect cycle top based on monthly AO
isBearMarket = aoCurrentMonth > ao_cycletop_threshold and aoPrevMonth1 > aoCurrentMonth

// Detect when a bull market is starting
var bool isBullMarketStarting = na
if (not isBullMarket[1] and isBullMarket)
    isBullMarketStarting := true
else
    isBullMarketStarting := false

// Logging
//log.info("isBullMarket is " + str.tostring(isBullMarket))
//log.info("isCycleTop is " + str.tostring(isBearMarket))

// Plot transparent overlays for Bull Market and Cycle Top
overlayColor = isBullMarket ? color.new(color.green, 80) : isBearMarket ? color.new(color.red, 60) : na
bgcolor(overlayColor, title="Market Condition Overlay")


//----------------------------------------------------------


// Calculate Potential Liquidations and Golden Buy Zones
volLength = input.int(20, "Volume Length", minval=1, group="Golden Buy Indicator")
volStdDevThreshold = input.float(2.0, "Volume Standard Diviation Threshold", step=0.1, group="Golden Buy Indicator")
aoWeeklyThreshold = input.int(0, "Awesome Oscillator Oversold Threshold", step=1, group="Golden Buy Indicator")


// Start Accumulating when the price is oversold or price action is flat
isStartAccumulating = waveTrend <= accumulatingLevel and not isBearMarket

// Start Selling when we are now in a Bull Market
isStartSelling = waveTrend > accumulatingLevel

// Calculate Overbought and Oversold Levels
isOverSold = waveTrend < overSoldLevel
isWayOverSold = waveTrend < wayOverSoldLevel
isOverBought = waveTrend > overBoughtLevel
isWayOverBought = waveTrend > wayOverBoughtLevel
//log.info("isOverSold= " + str.tostring(isOverSold) + " isWayOverSold= " + str.tostring(isWayOverSold) + " isOverBought= " + str.tostring(isOverBought) + " isWayOverBought= " + str.tostring(isWayOverBought))

//Weekly Awesome Oscillator to detect oversold levels
aoWeekly = request.security(syminfo.tickerid, "W", ao)

// Get standard deviation of volume over last 20 bars
volumeStDev = ta.stdev(volume, volLength)

// Detect volume spikes
volumeSpike = volume > (ta.sma(volume, volLength) + volStdDevThreshold * volumeStDev)

isGoldenBuyZone = volumeSpike and aoWeekly < aoWeeklyThreshold and not isBearMarket
plotshape(series=isGoldenBuyZone ? -60 : na, style=shape.triangleup, location=location.absolute, color=color.yellow, size=size.tiny, offset=0, title="Golden Buy Zone")

isMarketTop = volumeSpike and aoWeekly > -aoWeeklyThreshold and isBullMarket
plotshape(series=isMarketTop ? 60 : na, style=shape.triangledown, location=location.absolute, color=color.purple, size=size.tiny, offset=0, title="Market Top")



//---------------------------------------------------------

// Buying and Selling Input parameters for the indicator
isBullMarketStartingPercent = input.float(1.0, title="Starting a Bull Market Percent", step=0.01, group="Buy and Sell")
goldenBuyPercent = input.float(0.00006, title="Golden Buy Percent", step=0.01, group="Buy and Sell")
wayOverSoldPercent = input.float(0.00004, title="Way Over Sold Percent", step=0.01, group="Buy and Sell") 
overSoldPercent = input.float(0.00002, title="Over Sold Percent", step=0.01, group="Buy and Sell")
crossOverPercent = input.float(0.00002, title="Cross Over Percent", step=0.01, group="Buy and Sell")
overBoughtPercent = input.float(0.00005, title="Over Bought Percent", step=0.01, group="Buy and Sell")
wayOverBoughtPercent = input.float(0.00006, title="Way Over Bought Percent", step=0.01, group="Buy and Sell")

//Execute Buy and Sell Strategy
// Execute only if the bar's time is after the start date
if (true)
    if ((isCrossover and isCrossingUp and isStartAccumulating) or isGoldenBuyZone or isBullMarketStarting)
        if (isGoldenBuyZone) 
            strategy.entry("Golden Buy", strategy.long, qty = goldenBuyPercent * strategy.initial_capital)
            //log.info("Golden Buy " + str.tostring(goldenBuyPercent))
        else if (isBullMarketStarting)
            strategy.entry("Bull Buy", strategy.long, qty = isBullMarketStartingPercent * strategy.initial_capital)
            //log.info("Way Over Sold Buy " + str.tostring(wayOverSoldPercent))    
        else if (isWayOverSold) 
            strategy.entry(str.tostring(strategy.opentrades), strategy.long, qty = wayOverSoldPercent * strategy.initial_capital)
            //log.info("Way Over Sold Buy " + str.tostring(wayOverSoldPercent))
        else if (isOverSold)  
            strategy.entry(str.tostring(strategy.opentrades), strategy.long, qty = overSoldPercent * strategy.initial_capital)
            //log.info("Over Sold Buy " + str.tostring(overSoldPercent))
        else if (isCrossover)  
            strategy.entry(str.tostring(strategy.opentrades), strategy.long, qty = crossOverPercent * strategy.initial_capital)
            //log.info("Crossover Buy " + str.tostring(crossOverPercent))
    else if (isCrossover and isCrossingDown and isStartSelling) or isBearMarket or isMarketTop
        if (isBearMarket)
            strategy.close_all("Close all")
            //log.info("Closing All Open Positions")
        else if (isWayOverBought or isMarketTop) 
            int openTrades = strategy.opentrades  // Get the number of open trades
            int tradesToClose = math.floor(openTrades * wayOverBoughtPercent)
            //log.info("# of tradesToClose= " + str.tostring(tradesToClose))
    
            // Loop through and close 100% of the open trades determined
            for i = 0 to tradesToClose
                // Close the trade by referencing the correct index
                strategy.close(str.tostring(openTrades - 1 - i), qty_percent = 100)
                //log.info("Sell 100%: Closed trade # " + str.tostring(openTrades - 1 - i))
        else if (isOverBought) 
            int openTrades = strategy.opentrades  // Get the number of open trades
            int tradesToClose = math.floor(openTrades * overBoughtPercent) 
            //log.info("# of tradesToClose= " + str.tostring(tradesToClose))
    
            // Loop through and close 100% of the open trades determined
            for i = 0 to tradesToClose
                // Close the trade by referencing the correct index
                strategy.close(str.tostring(openTrades - 1 - i), qty_percent = 100)
                //log.info("Sell 100%: Closed trade # " + str.tostring(openTrades - 1 - i))
        else if (isStartSelling)
            strategy.close(str.tostring(strategy.opentrades - 1), qty_percent =50)
            //log.info("Sell 100% of Last Trade: Closed trade # " + str.tostring(strategy.opentrades - 1))