
La stratégie est un système de suivi des tendances qui combine un canal de moyenne mobile pondérée par Gauss et un indice stochastique relativement faible (RSI). La stratégie construit un canal de prix par la méthode de Gauss pondérée, et combine des signaux croisés d’indicateurs RSI aléatoires pour déterminer les moments d’entrée et de sortie, permettant une prise de conscience et une confirmation de la dynamique de la tendance.
La logique centrale de la stratégie comprend deux parties principales:
Système de canaux Gauss: construire des canaux de prix en utilisant des moyennes mobiles gaussées en poids ((GWMA) et des écarts standard gaussés en poids ((GWSD)). Le GWMA donne plus de poids aux données récentes, rendant la ligne de la même longueur plus sensible à la réaction aux changements de prix. La montée et la descente des canaux sont déterminées en multipliant le GWSD par un facteur multiplicatif.
Système RSI aléatoire: traitement aléatoire de l’indicateur RSI traditionnel pour calculer les valeurs K et D. Ce traitement permet de mieux identifier les zones de survente et de survente et de fournir un signal de dynamique plus précis.
La génération de signaux de transaction est basée sur les conditions suivantes:
La stratégie construit un système de suivi des tendances avec une base mathématique solide en combinant le canal de Gauss et l’indicateur RSI aléatoire. La stratégie est excellente dans les marchés où la tendance est évidente, mais il faut prêter attention à l’optimisation des paramètres et à l’adaptation à l’environnement du marché.
/*backtest
start: 2024-02-21 00:00:00
end: 2025-02-18 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("Gaussian Channel + Stoch RSI Strategy", overlay=true, margin_long=100, margin_short=100, initial_capital=100000, commission_type=strategy.commission.percent, commission_value=0.1, default_qty_type=strategy.percent_of_equity, default_qty_value=100, pyramiding=1)
// User Inputs
length = input.int(20, "Gaussian Length", minval=5)
multiplier = input.float(2.0, "Channel Multiplier", step=0.1)
rsiLength = input.int(14, "RSI Length", minval=1)
stochLength= input.int(14, "Stoch RSI Length", minval=1)
kLength = input.int(3, "Stoch K Smoothing", minval=1)
dLength = input.int(3, "Stoch D Smoothing", minval=1)
// Gaussian Weighted Moving Average Function
f_gaussian(source, length) =>
half = (length - 1) / 2.0
sum = 0.0
norm = 0.0
// Gaussian standard deviation chosen as length/6 for a smooth curve
denom = (length / 6.0) * (length / 6.0)
for i = 0 to length - 1
x = i - half
w = math.exp(-(x * x) / (2 * denom))
sum += source[i] * w
norm += w
sum / norm
// Gaussian Weighted Standard Deviation Function
f_gaussian_std(source, length) =>
half = (length - 1) / 2.0
gavg = f_gaussian(source, length)
sum = 0.0
norm = 0.0
denom = (length / 6.0) * (length / 6.0)
for i = 0 to length - 1
x = i - half
w = math.exp(-(x * x)/(2*denom))
diff = source[i] - gavg
sum += diff * diff * w
norm += w
math.sqrt(sum/norm)
// Compute Gaussian Channel
gaussMid = f_gaussian(close, length)
gaussStd = f_gaussian_std(close, length)
gaussUpper = gaussMid + gaussStd * multiplier
gaussLower = gaussMid - gaussStd * multiplier
// Stochastic RSI Calculation
rsi = ta.rsi(close, rsiLength)
rsiLowest = ta.lowest(rsi, stochLength)
rsiHighest = ta.highest(rsi, stochLength)
stoch = 100 * (rsi - rsiLowest) / math.max(rsiHighest - rsiLowest, 1e-10)
k = ta.sma(stoch, kLength)
d = ta.sma(k, dLength)
// Conditions
// Long entry: Price closes above upper Gaussian line AND Stoch RSI K > D (stochastic is "up")
longCondition = close > gaussUpper and k > d
// Exit condition: Price closes below upper Gaussian line
exitCondition = close < gaussUpper
// Only trade in the specified date range
inDateRange = time >= timestamp("2018-01-01T00:00:00") and time < timestamp("2069-01-01T00:00:00")
// Submit Orders
if inDateRange
if longCondition and strategy.position_size <= 0
strategy.entry("Long", strategy.long)
if exitCondition and strategy.position_size > 0
strategy.close("Long")
// Plot Gaussian Channel
plot(gaussMid, "Gaussian Mid", color=color.new(color.yellow, 0))
plot(gaussUpper, "Gaussian Upper", color=color.new(color.green, 0))
plot(gaussLower, "Gaussian Lower", color=color.new(color.red, 0))