
Dans le domaine du trading quantitatif, nous sommes souvent confrontés à la confusion de savoir pourquoi des stratégies basées sur des moyennes mobiles simples ou RSI fonctionnent bien dans certains environnements de marché, mais échouent fréquemment dans d’autres. La réponse réside dans la complexité des séquences de temps financières, car elles sont non seulement auto-corrélatives, mais aussi caractérisées par des taux de volatilité qui varient avec le temps.
La stratégie analysée aujourd’hui, qui combine habilement les modèles de régression automatique AR(2) et d’écarts conditionnels GARCH(1,1), tente de résoudre ce problème d’un point de vue statistique. Il ne s’agit pas d’une simple superposition d’indicateurs techniques, mais d’une exploration approfondie des caractéristiques de la séquence de temps financière.
Le cœur de la stratégie réside dans l’application du modèle de l’auto-rétroactivité. Qu’est-ce que l’auto-rétroactivité? En termes simples, c’est l’utilisation du passé pour prédire le futur.
r_t = φ₁ × r_{t-1} + φ₂ × r_{t-2} + ε_t
Le code utilise l’équation de Yule-Walker pour résoudre les coefficients φ1 et φ2:
c0 = calcAutoCovariance(returns, 0, lengthReg) // 滞后0期自协方差
c1 = calcAutoCovariance(returns, 1, lengthReg) // 滞后1期自协方差
c2 = calcAutoCovariance(returns, 2, lengthReg) // 滞后2期自协方差
phi1 = (c1 * c0 - c2 * c1) / denominator // 第一个自回归系数
phi2 = (c2 * c0 - c1 * c1) / denominator // 第二个自回归系数
L’avantage de cette méthode est qu’elle ne repose pas sur des jugements subjectifs, mais qu’elle permet aux données de “parler” d’elles-mêmes et de découvrir les régularités implicites dans la séquence des prix.
Les modèles AR ne sont pas suffisants, car les fluctuations des marchés financiers ne sont pas constantes. Nous savons tous que le phénomène de “fluctuation de la volatilité” est souvent accompagné de fortes fluctuations et que les périodes de calme durent souvent plus longtemps.
Le modèle GARCH ((1,1)) est conçu précisément pour cette caractéristique:
σ²_t = ω + α × ε²_{t-1} + β × σ²_{t-1}
La logique d’implémentation dans le code en témoigne clairement:
omega = (1 - adjustedAlpha - adjustedBeta) * longTermVar
garchVariance := omega + adjustedAlpha * math.pow(arResidual[1], 2) + adjustedBeta * garchVariance[1]
L’idée clé ici est que la condition actuelle dépend non seulement de l’écart-square du résidu de la période précédente (les chocs à court terme), mais aussi de l’écart-condition de la période précédente (la continuité à long terme). Le paramètre α contrôle l’impact des chocs à court terme, β contrôle la continuité des fluctuations.
Avec les prévisions AR et les estimations de volatilité GARCH, la stratégie construit une zone de confiance dynamique:
upperReturnBand = arReturnPredict + stdevFactor * garchStd
lowerReturnBand = arReturnPredict - stdevFactor * garchStd
La logique de génération des signaux de transaction reflète l’idée de la régression de la moyenne:
La subtilité de cette conception réside dans le fait que la largeur de la zone de confiance s’adapte à la dynamique de la volatilité du marché. Pendant les périodes de forte volatilité, la zone s’élargit, réduisant la fréquence des transactions; pendant les périodes de faible volatilité, la zone se rétrécit, augmentant les opportunités de négociation.
1. Vérification de la stabilité du modèle Le code contient des vérifications de stabilité importantes:
if stabilityCheck >= 0.99 or math.abs(phi2) >= 0.99
scaleFactor = 0.95 / math.max(stabilityCheck, math.abs(phi2) + 0.01)
Cela assure la stabilité du modèle AR et évite des résultats prédictifs dispersés.
2. La contrainte de convergence des paramètres Le modèle GARCH exige que α + β < 1 pour garantir l’existence d’un écart à long terme:
if sumParam >= 0.999
scale = 0.99 / sumParam
3. La nécessité d’un mécanisme de filtrage Les stratégies fournissent des options de filtrage RSI, ce qui est important dans les applications pratiques. Des modèles purement statistiques peuvent ignorer les caractéristiques tendancielles du marché, et l’ajout d’indicateurs techniques peut fournir des signaux de confirmation supplémentaires.
Bien que cette tactique soit élégante en théorie, elle est néanmoins nécessaire dans la pratique:
Sélection des fréquences de donnéesLes modèles AR-GARCH varient considérablement selon les périodes. Les données à haute fréquence fournissent plus d’informations, mais introduisent également plus de bruit.
Variabilité temporelle des paramètres: Dans la réalisation actuelle, on suppose que les paramètres AR et GARCH sont constants dans la fenêtre d’estimation, mais que la structure du marché réel peut changer.
Effets sur le coût des transactionsLes stratégies d’arbitrage statistique nécessitent généralement une fréquence de transaction plus élevée, et les frais de transaction et les coûts de dérivation ne doivent pas être négligés.
Cette stratégie AR-GARCH montre la puissance de la statistique moderne dans la modélisation financière. Il ne s’agit pas d’une simple combinaison d’indicateurs techniques, mais d’une exploration approfondie des caractéristiques statistiques de la chronologie financière.
Pour les traders quantifiés, la valeur d’une compréhension de ce type de stratégie réside non seulement dans l’application directe, mais aussi dans la capacité à analyser le marché avec une pensée statistique. Aujourd’hui où l’IA et l’apprentissage automatique dominent, ces modèles statistiques classiques restent des pierres angulaires importantes pour notre compréhension des marchés et la construction de stratégies.
/*backtest
start: 2025-04-01 00:00:00
end: 2025-09-09 08:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":500000}]
*/
//@version=5
strategy("AR(2)-GARCH Strategy", overlay=true)
//策略参数设置:配置AR模型、GARCH模型和交易信号的各项参数
lengthReg = input.int(50, "AR估计窗口", minval=50, maxval=200);//AR模型回归窗口长度
//GARCH波动率模型参数:控制条件方差的计算
useGarch = input.bool(true, "启用GARCH波动率");//是否启用GARCH波动率建模
garchAlpha = input.float(0.1, "GARCH Alpha", minval=0.01, maxval=0.3, step=0.01);//GARCH模型alpha参数
garchBeta = input.float(0.85, "GARCH Beta", minval=0.5, maxval=0.95, step=0.01);//GARCH模型beta参数
//交易信号生成参数:控制买卖信号的敏感度
stdevFactor = input.float(2.0, "标准差倍数", minval=1.0, maxval=3.0, step=0.1);//交易波段的标准差倍数
//风险控制参数:设置止损止盈水平
stopLossPerc = input.float(2.0, "止损 (%)", minval=0.5, maxval=5.0, step=0.1);//止损百分比
takeProfitPerc = input.float(4.0, "止盈 (%)", minval=1.0, maxval=10.0, step=0.1);//止盈百分比
//RSI过滤器参数:添加技术指标过滤条件
useRsiFilter = input.bool(false, "启用RSI过滤");//是否启用RSI过滤器
rsiLen = input.int(14, "RSI周期", minval=7, maxval=21);//RSI指标计算周期
rsiOB = input.float(70, "RSI超买线", minval=60, maxval=80);//RSI超买阈值
rsiOS = input.float(30, "RSI超卖线", minval=20, maxval=40);//RSI超卖阈值
//数据预处理:计算收益率序列
rawPrice = close;//原始收盘价
returns = math.log(rawPrice / rawPrice[1]);//对数收益率序列
//获取滞后收益率数据:AR(2)模型需要前两期的收益率数据
returns1 = returns[1];//滞后1期的收益率
returns2 = returns[2];//滞后2期的收益率
//计算收益率序列的移动平均值:作为AR模型的均值项
returnsMean = ta.sma(returns, lengthReg);//收益率的简单移动平均
//AR(2)模型系数计算:使用Yule-Walker方程求解自回归系数
//自协方差函数计算:计算不同滞后期的自协方差
calcAutoCovariance(data, lag, length) =>
mean = ta.sma(data, length);//计算数据的均值
sum = 0.0;//协方差累计值
count = 0;//有效数据点计数
for i = lag to length - 1
if not na(data[i]) and not na(data[i-lag])
sum := sum + (data[i] - mean) * (data[i-lag] - mean);//计算协方差分子
count := count + 1;//累计有效数据点
count > 0 ? sum / count : 0.0;//返回协方差值
//计算AR(2)模型所需的自协方差:用于Yule-Walker方程
c0 = calcAutoCovariance(returns, 0, lengthReg);//滞后0期的自协方差(即方差)
c1 = calcAutoCovariance(returns, 1, lengthReg);//滞后1期的自协方差
c2 = calcAutoCovariance(returns, 2, lengthReg);//滞后2期的自协方差
//Yule-Walker方程求解:计算AR(2)模型的两个自回归系数
// φ₁ = (c₁c₀ - c₂c₁) / (c₀² - c₁²)
// φ₂ = (c₂c₀ - c₁²) / (c₀² - c₁²)
denominator = c0 * c0 - c1 * c1;//分母计算
phi1 = denominator != 0 ? (c1 * c0 - c2 * c1) / denominator : 0.0;//第一个自回归系数
phi2 = denominator != 0 ? (c2 * c0 - c1 * c1) / denominator : 0.0;//第二个自回归系数
//AR(2)稳定性检验:确保模型稳定性条件 |φ₁| + |φ₂| < 1 且 |φ₂| < 1
stabilityCheck = math.abs(phi1) + math.abs(phi2);//计算系数绝对值之和
if stabilityCheck >= 0.99 or math.abs(phi2) >= 0.99
scaleFactor = 0.95 / math.max(stabilityCheck, math.abs(phi2) + 0.01);//计算缩放因子
phi1 := phi1 * scaleFactor;//调整第一个系数
phi2 := phi2 * scaleFactor;//调整第二个系数
//AR(2)收益率预测:根据历史收益率和AR系数预测下一期收益率
arReturnPredict = returnsMean + phi1 * (returns1 - returnsMean) + phi2 * (returns2 - returnsMean);//AR(2)预测公式
//计算AR模型的预测残差:用于GARCH建模
arResidual = returns - arReturnPredict;//AR模型的预测残差
//GARCH(1,1)波动率建模:对AR残差进行条件方差建模
var float garchVariance = na;//GARCH方差变量
var float longTermVar = na;//长期方差变量
//长期方差初始化:使用历史残差计算初始方差值
if na(longTermVar) and bar_index > lengthReg
longTermVar := ta.variance(arResidual, lengthReg);//计算长期方差
//GARCH参数调整:确保参数满足收敛条件
adjustedAlpha = garchAlpha;//调整后的alpha参数
adjustedBeta = garchBeta;//调整后的beta参数
sumParam = garchAlpha + garchBeta;//参数和
if sumParam >= 0.999
scale = 0.99 / sumParam;//计算参数缩放比例
adjustedAlpha := garchAlpha * scale;//调整alpha参数
adjustedBeta := garchBeta * scale;//调整beta参数
//GARCH(1,1)递归更新:根据GARCH公式更新条件方差
if useGarch and not na(longTermVar) and not na(arResidual)
if na(garchVariance)
garchVariance := longTermVar;//初始化GARCH方差
else
omega = (1 - adjustedAlpha - adjustedBeta) * longTermVar;//GARCH常数项
garchVariance := omega + adjustedAlpha * math.pow(arResidual[1], 2) + adjustedBeta * garchVariance[1];//GARCH递归公式
//条件标准差计算:从条件方差计算标准差
garchStd = useGarch and not na(garchVariance) ? math.sqrt(math.max(garchVariance, 0.0001)) : ta.stdev(arResidual, 20);//启用GARCH时使用条件标准差,否则使用历史标准差
//收益率空间的置信区间构建:基于AR预测和GARCH波动率
upperReturnBand = arReturnPredict + stdevFactor * garchStd;//上轨:预测收益率加上标准差倍数
lowerReturnBand = arReturnPredict - stdevFactor * garchStd;//下轨:预测收益率减去标准差倍数
//将置信区间转换为价格空间:用于实际交易信号生成
//基于预测收益率计算预测价格
predictedPrice = rawPrice[1] * math.exp(arReturnPredict);//根据预测收益率计算预测价格
upperPriceBand = rawPrice[1] * math.exp(upperReturnBand);//上轨价格
lowerPriceBand = rawPrice[1] * math.exp(lowerReturnBand);//下轨价格
//交易信号生成:基于当前价格相对于置信区间的位置
longSignal = rawPrice < lowerPriceBand;//做多信号:当前价格低于下轨
shortSignal = rawPrice > upperPriceBand;//做空信号:当前价格高于上轨
//RSI过滤器:使用RSI指标过滤交易信号
if useRsiFilter
rsi = ta.rsi(rawPrice, rsiLen);//计算RSI指标
longSignal := longSignal and rsi < rsiOS;//做多信号需要RSI超卖确认
shortSignal := shortSignal and rsi > rsiOB;//做空信号需要RSI超买确认
//策略执行:根据交易信号开仓和平仓
//开仓操作:根据信号建立多头或空头仓位
if longSignal
strategy.entry("Long", strategy.long);//开多仓
if shortSignal
strategy.entry("Short", strategy.short);//开空仓
//风险控制:设置止损止盈条件
if strategy.position_size > 0
strategy.exit("Long Exit", "Long",
stop=strategy.position_avg_price * (1 - stopLossPerc/100),
limit=strategy.position_avg_price * (1 + takeProfitPerc/100));//多仓止损止盈
if strategy.position_size < 0
strategy.exit("Short Exit", "Short",
stop=strategy.position_avg_price * (1 + stopLossPerc/100),
limit=strategy.position_avg_price * (1 - takeProfitPerc/100));//空仓止损止盈
//图表显示:在图表上绘制价格、预测线和交易信号
//主要价格线和预测线:显示实际价格和基于收益率预测的价格
plot(rawPrice, color=color.white, linewidth=1, title="价格");//绘制实际价格线
plot(predictedPrice, color=color.blue, linewidth=2, title="预测价格");//绘制预测价格线
plot(upperPriceBand, color=color.red, linewidth=1, title="上轨");//绘制上轨线
plot(lowerPriceBand, color=color.green, linewidth=1, title="下轨");//绘制下轨线
//交易信号标记:在图表上标记买卖信号点
plotshape(longSignal, style=shape.triangleup, location=location.belowbar,
color=color.green, size=size.small, title="买入");//标记买入信号
plotshape(shortSignal, style=shape.triangledown, location=location.abovebar,
color=color.red, size=size.small, title="卖出");//标记卖出信号