
यह रणनीति एक बहु-समय चक्र आरएसआई सूचक और एक गतिशील ग्रिड ट्रेडिंग सिस्टम के संयोजन के साथ एक मिश्रित रणनीति है। यह तीन अलग-अलग समय अवधि के आरएसआई सूचक मानों का विश्लेषण करके बाजार के ओवरबॉट और ओवरसोल्ड स्थिति की पहचान करता है, और स्थिति प्रबंधन के लिए एटीआर-आधारित गतिशील ग्रिड सिस्टम का उपयोग करता है। इसमें दैनिक स्टॉप और अधिकतम निकासी सुरक्षा जैसे जोखिम नियंत्रण तंत्र भी शामिल हैं, जो लाभ और जोखिम को प्रभावी ढंग से संतुलित करते हैं।
रणनीति के मूल तर्क में निम्नलिखित प्रमुख भाग शामिल हैं:
यह रणनीति बहु-समय चक्र आरएसआई विश्लेषण और एक गतिशील ग्रिड ट्रेडिंग सिस्टम के संयोजन के माध्यम से एक संतुलित ट्रेडिंग कार्यक्रम बनाती है। एक अच्छी तरह से विकसित जोखिम नियंत्रण तंत्र और लचीली पैरामीटर सेटिंग इसे विभिन्न बाजार स्थितियों के लिए उपयुक्त बनाती है। इस रणनीति की स्थिरता और लाभप्रदता को और भी बढ़ाया जा सकता है।
/*backtest
start: 2024-02-10 00:00:00
end: 2025-02-08 08:00:00
period: 3h
basePeriod: 3h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("Multi-Timeframe RSI Grid Strategy with Arrows", overlay=true)
// Input parameters
rsi_length = input.int(14, "RSI Length")
oversold = input.int(30, "Oversold Level")
overbought = input.int(70, "Overbought Level")
higher_tf1 = input.string("60", "Higher Timeframe 1")
higher_tf2 = input.string("240", "Higher Timeframe 2")
grid_factor = input.float(1.2, "Grid Multiplication Factor", step=0.1)
lot_multiplier = input.float(1.5, "Lot Multiplication Factor", step=0.1)
max_grid = input.int(5, "Maximum Grid Levels")
daily_target = input.float(4.0, "Daily Profit Target (%)", step=0.5)
atr_length = input.int(14, "ATR Length")
// Calculate RSI values
current_rsi = ta.rsi(close, rsi_length)
higher_tf1_rsi = request.security(syminfo.tickerid, higher_tf1, ta.rsi(close, rsi_length))
higher_tf2_rsi = request.security(syminfo.tickerid, higher_tf2, ta.rsi(close, rsi_length))
// Grid system variables
var int grid_level = 0
var float last_entry_price = na
var float base_size = strategy.equity * 0.01 / close
var float daily_profit_target = strategy.equity * (daily_target / 100)
var bool target_reached = false
// ATR for grid spacing
atr = ta.atr(atr_length)
grid_space = atr * grid_factor
// Daily reset
new_day = ta.change(time("D"))
if new_day
daily_profit_target := strategy.equity * (daily_target / 100)
target_reached := false
grid_level := 0
last_entry_price := na
// Trading conditions
buy_condition = current_rsi < oversold and higher_tf1_rsi < oversold and higher_tf2_rsi < oversold
sell_condition = current_rsi > overbought and higher_tf1_rsi > overbought and higher_tf2_rsi > overbought
// Reverse signal detection
reverse_long_to_short = sell_condition and strategy.position_size > 0
reverse_short_to_long = buy_condition and strategy.position_size < 0
// Close all trades on reverse signals
if reverse_long_to_short or reverse_short_to_long
strategy.close_all()
grid_level := 0
last_entry_price := na
// Grid management logic
if strategy.position_size == 0
grid_level := 0
last_entry_price := na
if strategy.position_size > 0 and not reverse_long_to_short
if close < last_entry_price - grid_space and grid_level < max_grid and not target_reached
strategy.entry("Long Grid " + str.tostring(grid_level), strategy.long, qty=base_size * math.pow(lot_multiplier, grid_level))
grid_level += 1
last_entry_price := close
if strategy.position_size < 0 and not reverse_short_to_long
if close > last_entry_price + grid_space and grid_level < max_grid and not target_reached
strategy.entry("Short Grid " + str.tostring(grid_level), strategy.short, qty=base_size * math.pow(lot_multiplier, grid_level))
grid_level += 1
last_entry_price := close
// Initial entry
if buy_condition and strategy.position_size == 0 and not target_reached
strategy.entry("Long", strategy.long, qty=base_size)
grid_level := 1
last_entry_price := close
if sell_condition and strategy.position_size == 0 and not target_reached
strategy.entry("Short", strategy.short, qty=base_size)
grid_level := 1
last_entry_price := close
// Profit target check
current_profit = strategy.netprofit + strategy.openprofit
if current_profit >= daily_profit_target and not target_reached
strategy.close_all()
target_reached := true
// Drawdown protection
if strategy.openprofit < -(0.02 * strategy.equity) // 2% drawdown protection
strategy.close_all()
grid_level := 0
last_entry_price := na
// Plot Buy and Sell Arrows
plotshape(series=buy_condition and strategy.position_size == 0, title="Buy Signal", location=location.belowbar, color=color.green, style=shape.labelup, text="BUY", size=size.small)
plotshape(series=sell_condition and strategy.position_size == 0, title="Sell Signal", location=location.abovebar, color=color.red, style=shape.labeldown, text="SELL", size=size.small)
// Plotting RSI
plot(current_rsi, "Current RSI", color=color.blue)
plot(higher_tf1_rsi, "HTF1 RSI", color=color.red)
plot(higher_tf2_rsi, "HTF2 RSI", color=color.green)
hline(oversold, "Oversold", color=color.gray)
hline(overbought, "Overbought", color=color.gray)