
Strategi ini menggabungkan beberapa jenis moving average yang berbeda untuk menghasilkan strategi pelacakan tren yang sederhana. Strategi ini juga memiliki fungsi untuk memfilter kebisingan.
Strategi ini pertama-tama melakukan smoothing pada harga penutupan, dan Anda dapat memilih untuk menggunakan atau tidak menggunakan harga penutupan Heiken Ashi. Kemudian, fungsi smoothMA akan dipanggil untuk melakukan beberapa kali overlay pada moving average. Fungsi smoothMA pertama-tama memanggil fungsi varian, yang dapat menghasilkan berbagai jenis moving average, seperti SMA, EMA, DEMA, dll.
Dapat dipertimbangkan untuk menggunakan indikator lain seperti MACD, KDJ, dan lain-lain untuk mengidentifikasi sinyal tren dengan lebih akurat. Optimalkan parameter moving average, mengurangi lag. Tetapkan tingkat stop loss yang wajar, kendalikan kerugian tunggal.
Strategi ini memungkinkan pelacakan tren dengan beberapa overlay moving averages, yang dapat secara efektif menghilangkan kebisingan pasar. Kelebihannya adalah mudah digunakan, parameter dapat disesuaikan secara fleksibel. Namun, penggunaan sistem moving averages saja masih memiliki masalah yang membatasi keuntungan. Penggunaan kombinasi dengan indikator teknis lainnya dapat dipertimbangkan, dengan memperhatikan pengendalian risiko perdagangan, pengoptimalan parameter, dan peningkatan efisiensi strategi.
/*backtest
start: 2022-10-30 00:00:00
end: 2023-11-05 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average [STRATEGY] @PuppyTherapy", overlay=true )
// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma = 6
phase = 2
power = 2
// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
xvnoise = abs(src - src[1])
nfastend = 0.666
nslowend = 0.0645
nsignal = abs(src - src[len])
nnoise = sum(xvnoise, len)
nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
nAMA = 0.0
nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))
t3(src, len)=>
xe1_1 = ema(src, len)
xe2_1 = ema(xe1_1, len)
xe3_1 = ema(xe2_1, len)
xe4_1 = ema(xe3_1, len)
xe5_1 = ema(xe4_1, len)
xe6_1 = ema(xe5_1, len)
b_1 = 0.7
c1_1 = -b_1*b_1*b_1
c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)
denominator != 0
? numerator / denominator
: 0
hwma(src, termsNumber) =>
sum = 0.0
weightSum = 0.0
termMult = (termsNumber - 1) / 2
for i = 0 to termsNumber - 1
weight = getWeight(termMult, i - termMult)
sum := sum + nz(src[i]) * weight
weightSum := weightSum + weight
sum / weightSum
get_jurik(length, phase, power, src)=>
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = pow(beta, power)
jma = 0.0
e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
jma := e2 + nz(jma[1])
variant(src, type, len ) =>
v1 = sma(src, len) // Simple
v2 = ema(src, len) // Exponential
v3 = 2 * v2 - ema(v2, len) // Double Exponential
v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential
v5 = wma(src, len) // Weighted
v6 = vwma(src, len) // Volume Weighted
v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed
v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull
v9 = linreg(src, len, lsmaOffset) // Least Squares
v10 = alma(src, len, almaOffset, almaSigma) // Arnaud Legoux
v11 = kama(src, len) // KAMA
ema1 = ema(src, len)
ema2 = ema(ema1, len)
v13 = t3(src, len) // T3
v14 = ema1+(ema1-ema2) // Zero Lag Exponential
v15 = hwma(src, len) // Henderson Moving average thanks to @everget
ahma = 0.0
ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average
v16 = ahma
v17 = get_jurik( len, phase, power, src)
type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1
smoothMA(c, maLoop, type, len) =>
ma_c = 0.0
if maLoop == 1
ma_c := variant(c, type, len)
if maLoop == 2
ma_c := variant(variant(c ,type, len),type, len)
if maLoop == 3
ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
if maLoop == 4
ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
if maLoop == 5
ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
ma_c
// Smoothing HA Function
smoothHA( o, h, l, c ) =>
hao = 0.0
hac = ( o + h + l + c ) / 4
hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
hah = max(h, max(hao, hac))
hal = min(l, min(hao, hac))
[hao, hah, hal, hac]
// ---- Main Selection ----
haSmooth = input(false, title=" Use HA as source ? " )
length = input(60, title=" MA1 Length", minval=1, maxval=1000)
maLoop = input(2, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)
_close_ma = haSmooth ? ha_close : close
_close_smoothed_ma = smoothMA( _close_ma, maLoop, type, length)
maColor = _close_smoothed_ma > _close_smoothed_ma[1] ? color.lime : color.red
plot(_close_smoothed_ma, title= "MA - Trend", color=maColor, transp=85, linewidth = 4)
long = _close_smoothed_ma > _close_smoothed_ma[1] and _close_smoothed_ma[1] < _close_smoothed_ma[2]
short = _close_smoothed_ma < _close_smoothed_ma[1] and _close_smoothed_ma[1] > _close_smoothed_ma[2]
plotshape( short , title="Short", color=color.red, transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long , title="Long", color=color.lime, transp=80, style=shape.triangleup, location=location.belowbar, size=size.small)
//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear = input(2018, "Backtest Start Year",minval=1980)
testStartMonth = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false
if testPeriod() and long
strategy.entry( "long", strategy.long )
if testPeriod() and short
strategy.entry( "short", strategy.short )