
Strategi ini adalah strategi pelacakan tren berdasarkan indeks moving averages (EMA) dan indikator momentum. Strategi ini melakukan perdagangan ketika tren pasar jelas dengan menggabungkan sinyal pergerakan dan filter tren EMA. Strategi ini mencakup modul manajemen risiko yang lengkap, filter waktu perdagangan yang fleksibel, dan fitur analisis statistik terperinci untuk meningkatkan stabilitas dan keandalan strategi.
Logika inti dari strategi ini didasarkan pada elemen-elemen kunci berikut:
Risiko pasar yang bergoyang: Pasar yang bergoyang di lateral dapat menghasilkan sinyal penembusan palsu yang sering. Solusi yang disarankan: Tambahkan filter indikator getaran atau tingkatkan ambang batas.
Risiko tergelincir: kemungkinan tergelincir lebih besar selama periode volatilitas yang tinggi. Solusi yang disarankan: Tetapkan batas stop loss yang wajar dan hindari perdagangan pada saat volatilitas tinggi.
Risiko over-trading: sinyal yang terlalu sering dapat menyebabkan over-trading. Solusi yang disarankan: Tetapkan batas maksimum transaksi per hari yang masuk akal.
Ini adalah strategi pelacakan tren yang dirancang dengan baik untuk menangkap peluang pasar dengan cara menggabungkan momentum breakout dan tren EMA. Sistem manajemen risiko strategi ini utuh, kemampuan analisis statistik yang kuat, dengan kepraktisan yang baik dan kemampuan untuk diperluas. Dengan terus-menerus mengoptimalkan dan menyempurnakan, strategi ini diharapkan dapat mempertahankan kinerja yang stabil di berbagai lingkungan pasar.
/*backtest
start: 2019-12-23 08:00:00
end: 2024-12-09 08:00:00
period: 2d
basePeriod: 2d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=6
strategy("[Mustang Algo] EMA Momentum Strategy",
shorttitle="[Mustang Algo] Mom Strategy",
overlay=true,
initial_capital=10000,
default_qty_type=strategy.fixed,
default_qty_value=1,
pyramiding=0,
calc_on_every_tick=false,
max_bars_back=5000)
// Momentum Parameters
len = input.int(10, minval=1, title="Length")
src = input(close, title="Source")
momTimeframe = input.timeframe("", title="Momentum Timeframe")
timeframe_gaps = input.bool(true, title="Autoriser les gaps de timeframe")
momFilterLong = input.float(5, title="Filtre Momentum Long", minval=0)
momFilterShort = input.float(-5, title="Filtre Momentum Short", maxval=0)
// EMA Filter
useEmaFilter = input.bool(true, title="Utiliser Filtre EMA")
emaLength = input.int(200, title="EMA Length", minval=1)
// Position Size
contractSize = input.float(1.0, title="Taille de position", minval=0.01, step=0.01)
// Time filter settings
use_time_filter = input.bool(false, title="Utiliser le Filtre de Temps")
start_hour = input.int(9, title="Heure de Début", minval=0, maxval=23)
start_minute = input.int(30, title="Minute de Début", minval=0, maxval=59)
end_hour = input.int(16, title="Heure de Fin", minval=0, maxval=23)
end_minute = input.int(30, title="Minute de Fin", minval=0, maxval=59)
gmt_offset = input.int(0, title="Décalage GMT", minval=-12, maxval=14)
// Risk Management
useAtrSl = input.bool(false, title="Utiliser ATR pour SL/TP")
atrPeriod = input.int(14, title="Période ATR", minval=1)
atrMultiplier = input.float(1.5, title="Multiplicateur ATR pour SL", minval=0.1, step=0.1)
stopLossPerc = input.float(1.0, title="Stop Loss (%)", minval=0.01, step=0.01)
tpRatio = input.float(2.0, title="Take Profit Ratio", minval=0.1, step=0.1)
// Daily trade limit
maxDailyTrades = input.int(2, title="Limite de trades par jour", minval=1)
// Variables for tracking daily trades
var int dailyTradeCount = 0
// Reset daily trade count
if dayofweek != dayofweek[1]
dailyTradeCount := 0
// Time filter function
is_within_session() =>
current_time = time(timeframe.period, "0000-0000:1234567", gmt_offset)
start_time = timestamp(year, month, dayofmonth, start_hour, start_minute, 0)
end_time = timestamp(year, month, dayofmonth, end_hour, end_minute, 0)
in_session = current_time >= start_time and current_time <= end_time
not use_time_filter or in_session
// EMA Calculation
ema200 = ta.ema(close, emaLength)
// Momentum Calculation
gapFillMode = timeframe_gaps ? barmerge.gaps_on : barmerge.gaps_off
mom = request.security(syminfo.tickerid, momTimeframe, src - src[len], gapFillMode)
// ATR Calculation
atr = ta.atr(atrPeriod)
// Signal Detection with Filters
crossoverUp = ta.crossover(mom, momFilterLong)
crossoverDown = ta.crossunder(mom, momFilterShort)
emaUpTrend = close > ema200
emaDownTrend = close < ema200
// Trading Conditions
longCondition = crossoverUp and (not useEmaFilter or emaUpTrend) and is_within_session() and dailyTradeCount < maxDailyTrades and barstate.isconfirmed
shortCondition = crossoverDown and (not useEmaFilter or emaDownTrend) and is_within_session() and dailyTradeCount < maxDailyTrades and barstate.isconfirmed
// Calcul des niveaux de Stop Loss et Take Profit
float stopLoss = useAtrSl ? (atr * atrMultiplier) : (close * stopLossPerc / 100)
float takeProfit = stopLoss * tpRatio
// Modification des variables pour éviter les erreurs de repainting
var float entryPrice = na
var float currentStopLoss = na
var float currentTakeProfit = na
// Exécution des ordres avec gestion des positions
if strategy.position_size == 0
if longCondition
entryPrice := close
currentStopLoss := entryPrice - stopLoss
currentTakeProfit := entryPrice + takeProfit
strategy.entry("Long", strategy.long, qty=contractSize)
strategy.exit("Exit Long", "Long", stop=currentStopLoss, limit=currentTakeProfit)
dailyTradeCount += 1
if shortCondition
entryPrice := close
currentStopLoss := entryPrice + stopLoss
currentTakeProfit := entryPrice - takeProfit
strategy.entry("Short", strategy.short, qty=contractSize)
strategy.exit("Exit Short", "Short", stop=currentStopLoss, limit=currentTakeProfit)
dailyTradeCount += 1
// Plot EMA
plot(ema200, color=color.yellow, linewidth=2, title="EMA 200")
// Plot Signals
plotshape(longCondition, title="Long Signal", location=location.belowbar, color=color.green, style=shape.triangleup, size=size.small)
plotshape(shortCondition, title="Short Signal", location=location.abovebar, color=color.red, style=shape.triangledown, size=size.small)
// // Performance Statistics
// var int longWins = 0
// var int longLosses = 0
// var int shortWins = 0
// var int shortLosses = 0
// if strategy.closedtrades > 0
// trade = strategy.closedtrades - 1
// isLong = strategy.closedtrades.entry_price(trade) < strategy.closedtrades.exit_price(trade)
// isWin = strategy.closedtrades.profit(trade) > 0
// if isLong and isWin
// longWins += 1
// else if isLong and not isWin
// longLosses += 1
// else if not isLong and isWin
// shortWins += 1
// else if not isLong and not isWin
// shortLosses += 1
// longTrades = longWins + longLosses
// shortTrades = shortWins + shortLosses
// longWinRate = longTrades > 0 ? (longWins / longTrades) * 100 : 0
// shortWinRate = shortTrades > 0 ? (shortWins / shortTrades) * 100 : 0
// overallWinRate = strategy.closedtrades > 0 ? (strategy.wintrades / strategy.closedtrades) * 100 : 0
// avgRR = strategy.grossloss != 0 ? math.abs(strategy.grossprofit / strategy.grossloss) : 0
// // Display Statistics
// var table statsTable = table.new(position.top_right, 4, 7, border_width=1)
// if barstate.islastconfirmedhistory
// table.cell(statsTable, 0, 0, "Type", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 0, "Win", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 0, "Lose", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 3, 0, "Daily Trades", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 1, "Long", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 1, str.tostring(longWins), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 1, str.tostring(longLosses), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 3, 1, str.tostring(dailyTradeCount) + "/" + str.tostring(maxDailyTrades), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 2, "Short", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 2, str.tostring(shortWins), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 2, str.tostring(shortLosses), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 3, "Win Rate", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 3, "Long: " + str.tostring(longWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 3, "Short: " + str.tostring(shortWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 4, "Overall", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 4, "Win Rate: " + str.tostring(overallWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 4, "Total: " + str.tostring(strategy.closedtrades) + " | RR: " + str.tostring(avgRR, "#.##"), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 5, "Trading Hours", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 5, "Start: " + str.format("{0,time,HH:mm}", start_hour * 60 * 60 * 1000 + start_minute * 60 * 1000), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 5, "End: " + str.format("{0,time,HH:mm}", end_hour * 60 * 60 * 1000 + end_minute * 60 * 1000), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 3, 5, "GMT: " + (gmt_offset >= 0 ? "+" : "") + str.tostring(gmt_offset), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 0, 6, "SL/TP Method", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 1, 6, useAtrSl ? "ATR-based" : "Percentage-based", bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 2, 6, useAtrSl ? "ATR: " + str.tostring(atrPeriod) : "SL%: " + str.tostring(stopLossPerc), bgcolor=color.new(color.blue, 90))
// table.cell(statsTable, 3, 6, "TP Ratio: " + str.tostring(tpRatio), bgcolor=color.new(color.blue, 90))