
Strategi ini adalah sistem perdagangan dinamis berdasarkan Gaussian Channel dan RSI acak, yang menggabungkan penyaringan musiman dan manajemen volatilitas. Strategi ini mengidentifikasi tren pasar dengan menyesuaikan diri dengan Gaussian Channel, menggunakan RSI acak untuk mengkonfirmasi dinamika, dan melakukan perdagangan dalam jendela musiman tertentu. Sistem ini juga mengintegrasikan manajemen posisi berbasis ATR untuk mengendalikan risiko setiap perdagangan.
Inti dari strategi ini adalah saluran harga yang dibangun berdasarkan filter Gaussian multipolar. Saluran ini membentuk orbit naik turun yang dinamis dengan menghitung nilai Gaussian harga HLC3 dan menggabungkan hasil gelombang dengan amplitudo fluktuasi nyata (TR).
Sinyal posisi rendah dipicu oleh penurunan harga. Seluruh sistem meningkatkan stabilitas perdagangan melalui banyak mekanisme penyaringan.
Ini adalah sistem pelacakan tren yang dibangun dengan baik, meningkatkan stabilitas perdagangan melalui beberapa lapisan penyaringan dan mekanisme manajemen risiko. Meskipun ada beberapa ruang untuk pengoptimalan, konsep desain keseluruhan sesuai dengan persyaratan perdagangan kuantitatif modern. Kunci keberhasilan strategi adalah penyesuaian parameter yang tepat dan adaptasi terhadap lingkungan pasar.
/*backtest
start: 2024-02-08 00:00:00
end: 2025-02-06 08:00:00
period: 4h
basePeriod: 4h
exchanges: [{"eid":"Futures_Binance","currency":"DIA_USDT"}]
*/
//@version=6
strategy("Demo GPT - Gold Gaussian Strategy", overlay=true, commission_type=strategy.commission.percent, commission_value=0.1)
// ====== INPUTS ======
// Gaussian Channel
lengthGC = input.int(144, "Gaussian Period", minval=20)
poles = input.int(4, "Poles", minval=1, maxval=9)
multiplier = input.float(1.414, "Volatility Multiplier", minval=1)
// Stochastic RSI
smoothK = input.int(3, "Stoch K", minval=1)
lengthRSI = input.int(14, "RSI Length", minval=1)
lengthStoch = input.int(14, "Stoch Length", minval=1)
overbought = input.int(80, "Overbought Level", minval=50)
// Seasonal Filter (corrected)
startMonth = input.int(9, "Start Month (1-12)", minval=1, maxval=12)
endMonth = input.int(2, "End Month (1-12)", minval=1, maxval=12)
// Volatility Management
atrLength = input.int(22, "ATR Length", minval=5)
riskPercent = input.float(0.5, "Risk per Trade (%)", minval=0.1, step=0.1)
// ====== GAUSSIAN CHANNEL ======
f_filt9x(alpha, source, iterations) =>
float f = 0.0
float x = 1 - alpha
int m2 = iterations == 9 ? 36 : iterations == 8 ? 28 : iterations == 7 ? 21 :
iterations == 6 ? 15 : iterations == 5 ? 10 : iterations == 4 ? 6 :
iterations == 3 ? 3 : iterations == 2 ? 1 : 0
int m3 = iterations == 9 ? 84 : iterations == 8 ? 56 : iterations == 7 ? 35 :
iterations == 6 ? 20 : iterations == 5 ? 10 : iterations == 4 ? 4 :
iterations == 3 ? 1 : 0
int m4 = iterations == 9 ? 126 : iterations == 8 ? 70 : iterations == 7 ? 35 :
iterations == 6 ? 15 : iterations == 5 ? 5 : iterations == 4 ? 1 : 0
int m5 = iterations == 9 ? 126 : iterations == 8 ? 56 : iterations == 7 ? 21 :
iterations == 6 ? 6 : iterations == 5 ? 1 : 0
int m6 = iterations == 9 ? 84 : iterations == 8 ? 28 : iterations == 7 ? 7 :
iterations == 6 ? 1 : 0
int m7 = iterations == 9 ? 36 : iterations == 8 ? 8 : iterations == 7 ? 1 : 0
int m8 = iterations == 9 ? 9 : iterations == 8 ? 1 : 0
int m9 = iterations == 9 ? 1 : 0
f := math.pow(alpha, iterations) * nz(source) +
iterations * x * nz(f[1]) -
(iterations >= 2 ? m2 * math.pow(x, 2) * nz(f[2]) : 0) +
(iterations >= 3 ? m3 * math.pow(x, 3) * nz(f[3]) : 0) -
(iterations >= 4 ? m4 * math.pow(x, 4) * nz(f[4]) : 0) +
(iterations >= 5 ? m5 * math.pow(x, 5) * nz(f[5]) : 0) -
(iterations >= 6 ? m6 * math.pow(x, 6) * nz(f[6]) : 0) +
(iterations >= 7 ? m7 * math.pow(x, 7) * nz(f[7]) : 0) -
(iterations >= 8 ? m8 * math.pow(x, 8) * nz(f[8]) : 0) +
(iterations == 9 ? m9 * math.pow(x, 9) * nz(f[9]) : 0)
f
f_pole(alpha, source, iterations) =>
float fn = na
float f1 = f_filt9x(alpha, source, 1)
float f2 = iterations >= 2 ? f_filt9x(alpha, source, 2) : na
float f3 = iterations >= 3 ? f_filt9x(alpha, source, 3) : na
float f4 = iterations >= 4 ? f_filt9x(alpha, source, 4) : na
float f5 = iterations >= 5 ? f_filt9x(alpha, source, 5) : na
float f6 = iterations >= 6 ? f_filt9x(alpha, source, 6) : na
float f7 = iterations >= 7 ? f_filt9x(alpha, source, 7) : na
float f8 = iterations >= 8 ? f_filt9x(alpha, source, 8) : na
float f9 = iterations == 9 ? f_filt9x(alpha, source, 9) : na
fn := iterations == 1 ? f1 :
iterations == 2 ? f2 :
iterations == 3 ? f3 :
iterations == 4 ? f4 :
iterations == 5 ? f5 :
iterations == 6 ? f6 :
iterations == 7 ? f7 :
iterations == 8 ? f8 :
iterations == 9 ? f9 : na
[fn, f1]
beta = (1 - math.cos(4 * math.asin(1) / lengthGC)) / (math.pow(1.414, 2 / poles) - 1)
alpha = -beta + math.sqrt(math.pow(beta, 2) + 2 * beta)
lag = int((lengthGC - 1) / (2 * poles))
srcAdjusted = hlc3 + (hlc3 - hlc3[lag])
[mainFilter, filt1] = f_pole(alpha, srcAdjusted, poles)
[trFilter, tr1] = f_pole(alpha, ta.tr(true), poles)
upperBand = mainFilter + trFilter * multiplier
lowerBand = mainFilter - trFilter * multiplier
// ====== STOCHASTIC RSI ======
rsiValue = ta.rsi(close, lengthRSI)
k = ta.sma(ta.stoch(rsiValue, rsiValue, rsiValue, lengthStoch), smoothK)
stochSignal = k >= overbought
// ====== SEASONAL FILTER (FIXED) ======
currentMonth = month(time)
inSeason = (currentMonth >= startMonth and currentMonth <= 12) or
(currentMonth >= 1 and currentMonth <= endMonth)
// ====== VOLATILITY MANAGEMENT ======
atr = ta.atr(atrLength)
positionSize = math.min((strategy.equity * riskPercent/100) / atr, strategy.equity * 0.5 / close)
// ====== TRADING LOGIC ======
trendUp = mainFilter > mainFilter[1]
priceAbove = close > upperBand
longCondition = trendUp and priceAbove and stochSignal and inSeason
exitCondition = ta.crossunder(close, lowerBand)
// ====== EXECUTION ======
if longCondition
strategy.entry("Long", strategy.long, qty=positionSize)
if exitCondition
strategy.close("Long")
// ====== VISUALIZATION ======
plot(upperBand, "Upper Band", color=color.new(#00FF00, 0))
plot(lowerBand, "Lower Band", color=color.new(#FF0000, 0))
bgcolor(inSeason ? color.new(color.blue, 90) : na, title="Season Filter")