
Strategi ini adalah sistem perdagangan multidimensi yang didasarkan pada Nadaraya-Watson Kern Regression, yang membentuk sinyal komprehensif untuk memandu keputusan perdagangan dengan mengintegrasikan informasi pasar dari empat dimensi: teknis, emosional, metafisik, dan niat. Strategi ini menggunakan metode optimasi berat, pemrosesan berat pada sinyal dari berbagai dimensi, dan menggabungkan filter tren dan momentum untuk meningkatkan kualitas sinyal.
Inti dari strategi ini adalah untuk memperlancar data pasar multi-dimensi melalui metode regresi inti Nadaraya-Watson.
Ini adalah strategi inovatif yang menggabungkan metode matematika dengan kecerdasan perdagangan. Dengan analisis multi-dimensi dan alat matematika canggih, strategi dapat menangkap beberapa lapisan pasar dan memberikan sinyal perdagangan yang relatif andal. Meskipun ada beberapa ruang untuk pengoptimalan, kerangka keseluruhan strategi ini kokoh dan memiliki nilai aplikasi praktis.
/*backtest
start: 2025-02-17 00:00:00
end: 2025-02-19 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Binance","currency":"ETH_USDT"}]
*/
//@version=5
strategy("Enhanced Multidimensional Integration Strategy with Nadaraya", overlay=true, initial_capital=10000, currency=currency.USD, default_qty_type=strategy.percent_of_equity, default_qty_value=10)
//────────────────────────────────────────────────────────────────────────────
// 1. Configuration and Weight Optimization Parameters
//────────────────────────────────────────────────────────────────────────────
// Weights can be optimized to favor dimensions with higher historical correlation.
// Base values are maintained but can be fine-tuned.
w_technical = input.float(0.4, "Technical Weight", step=0.05)
w_emotional = input.float(0.2, "Emotional Weight", step=0.05)
w_extrasensor = input.float(0.2, "Extrasensory Weight", step=0.05)
w_intentional = input.float(0.2, "Intentional Weight", step=0.05)
// Parameters for Nadaraya-Watson Smoothing Function:
// Smoothing period and bandwidth affect the "memory" and sensitivity of the signal.
smooth_length = input.int(20, "Smoothing Period", minval=5)
bw_param = input.float(20, "Bandwidth", minval=1, step=1)
//────────────────────────────────────────────────────────────────────────────
// 2. Risk Management Parameters
//────────────────────────────────────────────────────────────────────────────
// Incorporate stop-loss and take-profit in percentage to protect capital.
// These parameters can be optimized through historical testing.
stopLossPerc = input.float(1.5, "Stop Loss (%)", step=0.1) / 100 // 1.5% stop-loss
takeProfitPerc = input.float(3.0, "Take Profit (%)", step=0.1) / 100 // 3.0% take-profit
//────────────────────────────────────────────────────────────────────────────
// 3. Additional Filters (Trend and Momentum)
//────────────────────────────────────────────────────────────────────────────
// A long-term moving average is used to confirm the overall trend direction.
trend_length = input.int(200, "Trend MA Period", minval=50)
// RSI is used to confirm momentum. A level of 50 is common to distinguish bullish and bearish phases.
rsi_filter_level = input.int(50, "RSI Confirmation Level", minval=30, maxval=70)
//────────────────────────────────────────────────────────────────────────────
// 4. Definition of Dimensions
//────────────────────────────────────────────────────────────────────────────
tech_series = close
emotional_series = ta.rsi(close, 14) / 100
extrasensorial_series = ta.atr(14) / close
intentional_series = (close - ta.sma(close, 50)) / close
//────────────────────────────────────────────────────────────────────────────
// 5. Nadaraya-Watson Smoothing Function
//────────────────────────────────────────────────────────────────────────────
// This function smooths each dimension using a Gaussian kernel.
// Proper smoothing reduces noise and helps obtain a more robust signal.
nadaraya_smooth(_src, _len, _bw) =>
if bar_index < _len
na
else
float sumW = 0.0
float sumWY = 0.0
for i = 0 to _len - 1
weight = math.exp(-0.5 * math.pow(((_len - 1 - i) / _bw), 2))
sumW := sumW + weight
sumWY := sumWY + weight * _src[i]
sumWY / sumW
//────────────────────────────────────────────────────────────────────────────
// 6. Apply Smoothing to Each Dimension
//────────────────────────────────────────────────────────────────────────────
sm_tech = nadaraya_smooth(tech_series, smooth_length, bw_param)
sm_emotional = nadaraya_smooth(emotional_series, smooth_length, bw_param)
sm_extrasens = nadaraya_smooth(extrasensorial_series, smooth_length, bw_param)
sm_intentional = nadaraya_smooth(intentional_series, smooth_length, bw_param)
//────────────────────────────────────────────────────────────────────────────
// 7. Integration of Dimensions
//────────────────────────────────────────────────────────────────────────────
// The integrated signal is composed of the weighted sum of each smoothed dimension.
// This multidimensional approach seeks to capture different aspects of market behavior.
integrated_signal = (w_technical * sm_tech) + (w_emotional * sm_emotional) + (w_extrasensor * sm_extrasens) + (w_intentional * sm_intentional)
// Additional smoothing of the integrated signal to obtain a reference line.
sma_integrated = ta.sma(integrated_signal, 10)
//────────────────────────────────────────────────────────────────────────────
// 8. Additional Filters to Improve Accuracy and Win Rate
//────────────────────────────────────────────────────────────────────────────
// Trend filter: only trade in the direction of the overall trend, determined by a 200-period SMA.
trendMA = ta.sma(close, trend_length)
// Momentum filter: RSI is used to confirm the strength of the movement (RSI > 50 for long and RSI < 50 for short).
rsi_val = ta.rsi(close, 14)
longFilter = (close > trendMA) and (rsi_val > rsi_filter_level)
shortFilter = (close < trendMA) and (rsi_val < rsi_filter_level)
// Crossover signals of the integrated signal with its SMA reference.
rawLongSignal = ta.crossover(integrated_signal, sma_integrated)
rawShortSignal = ta.crossunder(integrated_signal, sma_integrated)
// Incorporate trend and momentum filters to filter false signals.
longSignal = rawLongSignal and longFilter
shortSignal = rawShortSignal and shortFilter
//────────────────────────────────────────────────────────────────────────────
// 9. Risk Management and Order Generation
//────────────────────────────────────────────────────────────────────────────
// Entries are made based on the filtered integrated signal.
if longSignal
strategy.entry("Long", strategy.long, comment="Long Entry")
if shortSignal
strategy.entry("Short", strategy.short, comment="Short Entry")
// Add automatic exits using stop-loss and take-profit to limit losses and secure profits.
// For long positions: stop-loss below entry price and take-profit above.
if strategy.position_size > 0
strategy.exit("Exit Long", "Long", stop = strategy.position_avg_price * (1 - stopLossPerc), limit = strategy.position_avg_price * (1 + takeProfitPerc))
// For short positions: stop-loss above entry price and take-profit below.
if strategy.position_size < 0
strategy.exit("Exit Short", "Short", stop = strategy.position_avg_price * (1 + stopLossPerc), limit = strategy.position_avg_price * (1 - takeProfitPerc))
//────────────────────────────────────────────────────────────────────────────
// 10. Visualization on the Chart
//────────────────────────────────────────────────────────────────────────────
plot(integrated_signal, color=color.blue, title="Integrated Signal", linewidth=2)
plot(sma_integrated, color=color.orange, title="SMA Integrated Signal", linewidth=2)
plot(trendMA, color=color.purple, title="Trend MA (200)", linewidth=1, style=plot.style_line)
plotshape(longSignal, title="Long Signal", location=location.belowbar, color=color.green, style=shape.labelup, text="LONG")
plotshape(shortSignal, title="Short Signal", location=location.abovebar, color=color.red, style=shape.labeldown, text="SHORT")